

PL-2 Series Medium-Duty Industrial Hydraulic Cylinders

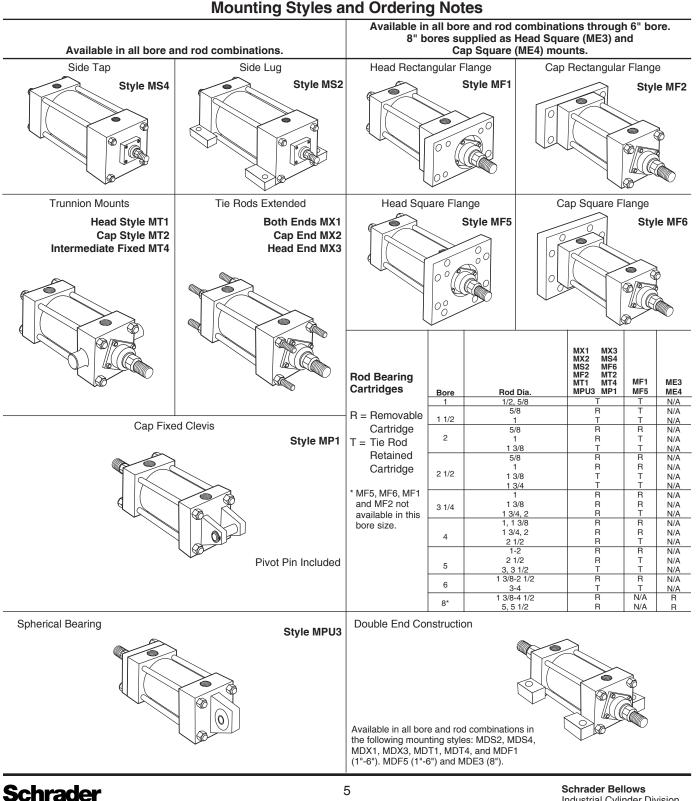
Contents

Features	4
Specifications / Mountings	5
Design Features and Benefits	6-7
Mounting Information, 1" to 6" Bore Sizes	8-27
Mounting Information, 8" Bore Size	28-35
Spherical Bearing Mounting	36-38
Double Rod Models	39

Cylinder Accessories	
"Style 6" Piston Rod End	
How to Order	
Linear Alignment Couplers	48
Parts I.D. and Seal Kits	Sec. C, pgs. 32-36
Application Engineering Data	Sec. C, pgs. 49-93

Schrader Bellows PL-2 Series Medium Duty Hydraulic Cylinder

When the job calls for reliable performance, specify PL-2 Series. A 100,000 psi yield strength chrome-plated, case-hardened piston rod. A 125,000 psi yield strength rod-end stud with rolled threads. 100,000 psi yield strength tie rods. With construction like this, it's no wonder Schrader Bellows PL-2 Series are truly premium quality cylinders. And to make sure every cylinder is premium quality, we subject each and every one — not just batch samples — to tough inspection and performance tests. See the following pages for the inside story on all the features that make PL-2 Series the high performance, long lasting choice for your medium duty hydraulic applications.


Note: Rod Diameters over $2^{1}/_{2}$ " will use a threaded nose gland.

Standard Specifications

- Medium-Duty Service ANSI/(NFPA) T3.6.7R3-2009 Specifications and Mounting Dimension Standards
- Standard Construction Square Head Tie Rod Design •
- Nominal Pressure 1000 PSI Dependent on Bore Size*
- Standard Fluid Hydraulic Oil
- Standard Temperature -10° F. to +165°F.** .
- Bore Sizes 1" through 8"
- Piston Rod Diameters 1/2" through 51/2"

- Mounting Styles 14 standard styles at various application ratings •
- Strokes Available in any practical stroke length
- Cushions Optional at either end or both ends of stroke. Float Check at cap end.
- Rod Ends Three Standard Choices Specials to Order
- * See Section C for recommended operating pressure.

** See Section C, "Operating Fluids and Temperature Range" for higher temperature service. In line with our policy of continuing product improvement, specifications in this catalog are subject to change.

B

PL-2

Bellows

The inside story... Why PL-2 Series is your best choice in medium-duty hydraulic cylinders.

Primary Seal – "Tuffseal" Special polyurethane seal is a proven leakproof design, which incorporates the pressure-compensated uni-directional characteristics of a "U CUP" with the multiple edge sealing effectiveness of compression-type stacked-packings.

Secondary Seal –

A Double-Service Wiperseal[™] acts as a secondary pressure seal on the extend stroke and cleans the rod on the return stroke.

Bolt-On Rod Cartridge – Assures true – concentricity and allows removal without tie rod disassembly.

Piston Rod Stud -

Furnished on 2" diameter rods and smaller when standard style #2 rod end threads are required. Piston rod studs are also available in 2 times the catalog "A" dimension length. Studs have rolled threads and are made from high strength steel. Anaerobic adhesive is used to permanently lock the stud to the piston rod.

Long Bearing Surface -

is inboard of the seals, assuring positive lubrication from within the cylinder. An "O" ring is used as a seal between gland and head, and also serves as a prevailing torque-type lock.

Alloy Steel ***** Tie Rod Nuts

Align-A-Groove –

A $3\overline{7}_{16}$ " wide surface machined at each end of the cylinder body. This makes precise mounting quick and easy.

Adjustable floating cushions

Cushions are optional, and can be supplied at head end, cap end, or both ends without change in envelope or mounting dimensions. Cushions are adjustable.

The PL-2 Series cylinder design incorporates the longest cushion sleeve and cushion spear that can be provided in the standard envelope without decreasing the rod bearing and piston bearing lengths.

- (1) When a cushion is specified at the head end:
 - a. A self-centering sleeve is supplied on the piston rod assembly.
 - b. A needle valve is provided that is flush with the side of the head when wide open. It may be identified by the fact that it is socket-keyed. Needle valves are located on side number 2 in all mounting styles except MT1, MT2 and MT4. These styles have needle valves located on side number 3.
 - c. On 3¹/₄" bores and larger, a springless check valve is provided that is also flush with the side of the head and is mounted on the face adjacent

to the needle valve except on certain bores of mounting style MS2 where it is mounted opposite the needle valve. It may be identified by the fact that it is slotted.

d. The check and needle valves are interchangeable in the head.

Piston Rod – Medium carbon steel, induction case-hardened, hard chrome-plated and polished to 10 RMS finish. Piston rods are made

from 90,000 to 100,000 psi minimum yield material in $\frac{5}{8}$ " through $2^{1}/2^{"}$ diameters. Larger diameters vary between 57,000 and 90,000

psi minimum yield material, depending on rod diameter. The piston thread equals the catalog style #2 rod end thread for each rod

End Seals -

Pressure-actuated

head and cap O rings.

cylinder body-to-

diameter to assure proper piston-to-rod thread strength. Two

Ports – NPTF ports

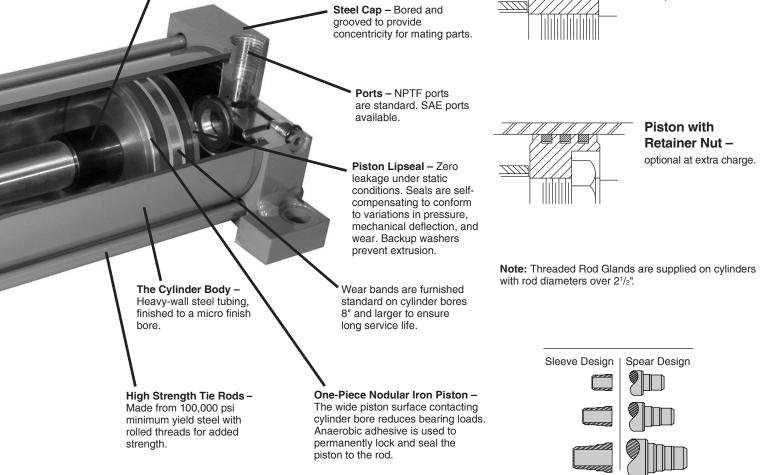
are standard. SAE

ports available.

wrench flats are provided for rod end attachment.

Steel Head - Bored

provide concentricity


and grooved to

for mating parts.

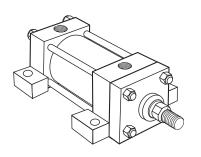
- e. 1" to 21/2" bore PL-2 series utilize a slotted sleeve design in place of the check valve.
- (2) When a cushion is specified at the cap end:
 - a. A cushion spear is provided on the piston rod assembly.
 - b. A "Float Check" self-centering bushing is provided which incorporates a large flow check valve for fast "out-stroke" action.
 - c. A socket-keyed needle valve is provided that is flush with the side of the cap when wide open. It is located on side number 2 in all mounting styles except MT1, MT2 and MT4. These styles have needle valves located on side number 3.

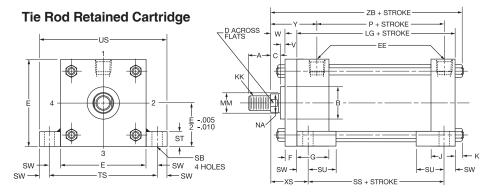
Adjustable Floating Cushions – Cushions are optional and can be supplied at head end, cap end, or both ends without change in envelope or mounting dimensions.

Step Cut Iron Piston Rings are optional.

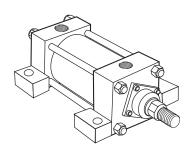
Cushion Length

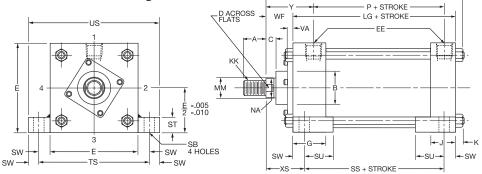
Cylinder Bore	Rod Diameter*	Cushion (Inch			
(Inches)	(Inches)	Head*	Cap		
	1/2	7/8	3/4		
1	⁵ /8	7/8	3/4		
	⁵ / ₈	7/8	¹³ / ₁₆		
1 ¹ / ₂	1	7/8	¹³ / ₁₆		
_	5/8	7/8	¹³ / ₁₆		
2	1 ³ /8	7/8	¹³ / ₁₆		
01/	1	7/8	¹³ / ₁₆		
21/2	1 ³ / ₄	7/8	¹³ / ₁₆		
01/	1	1 ¹ /8	1		
31/4	2	¹³ / ₁₆	1		
4	1 ³ /8	1 ¹ /8	1		
4	21/2	¹³ / ₁₆	1		


Cylinder Bore	Rod Diameter*	Cushion Length (Inches)					
(Inches)	(Inches)	Head*	Сар				
-	1 ³ /4	1 ¹ /8	1				
5	3 ¹ / ₂	¹³ / ₁₆	1				
C	1 ³ / ₄	1 ³ /8	1 ¹ / ₄				
6	4	1 ¹ / ₁₆	1 ¹ / ₄				
_	2	1 ¹ / ₁₆	1 ¹ / ₄				
8	5 ¹ /2	¹⁵ / ₁₆	1 ¹ / ₄				


*Head end cushion for rod diameters not listed have cushion lengths within the limits shown.

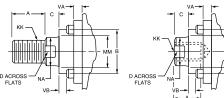
Side Lug Mount

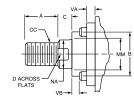

Style MS2 1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods



Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges.

Side Lug Mount Style MS2 1 1/2" - 6" Bore

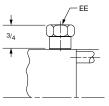

Removable Cartridge 119


Rod End Dimensions — see table 2 **Thread Style 2**

Thread Style 4 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended

"Special" **Thread Style 0**


Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK. A. W or WF. If otherwise special, furnish dimensioned sketch.

Straight Thread Port Adapters

ZB + STROKE

Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

		EE												Α	dd Strol	(e
Bore	Е		SAE*	F	G	J	к	SB•	ST	SU	SW	TS	US	LG	Р	SS
1‡		1/4	6	³ /8	1 ¹ / ₂	1	³ /16	⁹ /32	⁵ /16	3/4	⁵ /16	2 ¹ /8	2 ³ /4	3 ¹ / ₂	2 ¹ /8	27/8
1 ¹ / ₂	2	3/84	6#	³ /8	1 ¹ / ₂	1	1/4	⁷ / ₁₆	1/2	¹⁵ /16	³ /8	2 ³ /4	3 ¹ / ₂	35/8	2 ¹ / ₄	27/8
2	2 ¹ / ₂	3/84	6	³ /8	1 ¹ / ₂	1	⁵ /16	7/16	1/2	¹⁵ /16	³ /8	3 ¹ / ₄	4	35/8	2 ¹ / ₄	27/8
2 ¹ / ₂	3	3/84	6	³ /8	1 ¹ / ₂	1	⁵ /16	7/16	1/2	¹⁵ /16	³ /8	3 ³ / ₄	4 ¹ / ₂	3 ³ / ₄	2 ³ /8	3
3 ¹ / ₄	3 ³ / ₄	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	⁹ /16	³ /4	1 1/4	1/2	4 ³ / ₄	5 ³ /4	4 ¹ / ₄	2 ⁵ /8	3 ¹ / ₄
4	4 ¹ / ₂	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	⁹ /16	3/4	1 ¹ /4	1/2	5 ¹ /2	6 ¹ /2	4 ¹ / ₄	25/8	3 ¹ / ₄
5	5 ¹ /2	1/2	10	⁵ /8	1 ³ /4	1 ¹ /4	⁷ /16	¹³ /16	1	1 9/16	¹¹ /16	6 ⁷ /8	8 ¹ / ₄	4 ¹ / ₂	27/8	3 ¹ /8
6	6 ¹ / ₂	³ /4	12	³ /4	2	1 ¹ / ₂	⁷ /16	¹³ /16	1	1 ⁹ /16	¹¹ /16	7 ⁷ /8	9 ¹ / ₄	5	3 ¹ /8	35/8

P NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

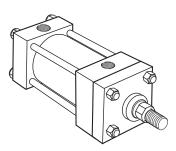
* SAE straight thread ports are indicated by port number.

■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.

† On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available.

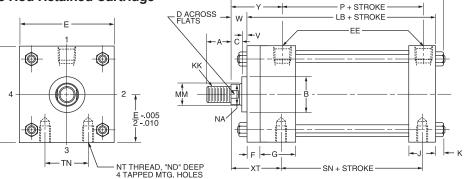
Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting.
An adapter fitting is also required on the head end of 1 1/2" bore with straight
thread ports and 1" rod. Adapters are furnished as standard.

• Upper surface spotfaced for socket head screws.


‡ Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

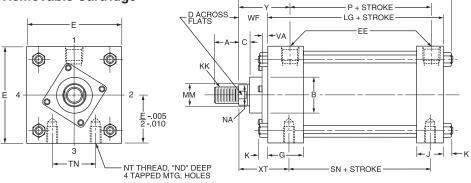
	ROUEL	d Dimer	isions a	ind Ei	nvelope	e Din	nensio	ons Aff	ected	l by F	Rod S	ize				
		Thr	ead		Ro	d End	Dimen	sions ar	nd Env	elope	Dimen	sions	Affecte	d by Ro	od Size	
	Rod Dia.	Style 4	Style 2 & 3		+.000											AddStroke
Bore	MM	CC	КК	Α	В	С	D	NA	V	VA	VB	W	WF	XS	Y	ZB
1	1/2	⁷ /16-20	⁵ /16-24	⁵ /8	.999	³ /8	3/8	⁷ / ₁₆	1/4		_	⁵ /8	—	1 ⁵ / ₁₆	1 ¹⁵ / ₁₆	4 ¹¹ / ₁₆
'	⁵ /8	1/2-20	7/16-20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	1/4	—	—	⁵ /8	—	1 ⁵ / ₁₆	1 ¹⁵ / ₁₆	4 ¹¹ / ₁₆
1 ¹ / ₂	⁵ /8	¹ /2-20	⁷ / ₁₆ -20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	—	1/4	³ /16	—	1	1 ³ /8	1 ¹⁵ / ₁₆	47/8
1 /2	1	⁷ /8 -14	³ /4 -16	1 1/8	1.499	1/2	7/8	¹⁵ / ₁₆	1/2	_	—	1	—	1 ³ / ₄	2 ⁵ /16	5 ¹ /4
	⁵ /8	1/2-20	7/16-20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	—	1/4	³ /16	—	1	1 ³ /8	1 ¹⁵ /16	4 ¹⁵ / ₁₆
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	⁵ /8	_	_	1 ¹ / ₄	—	2	2 ⁹ /16	5 ⁹ /16
	1	⁷ /8 -14	³ /4-16	1 1/8	1.499	1/2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	_	1 ³ /8	1 ³ / ₄	2 ⁵ /16	5 ⁵ /16
	1	⁷ /8 -1 4	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	—	1 ³ /8	1 ³ / ₄	2 ⁵ /16	5 ⁷ /16
2 ¹ / ₂	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	3/4	_	_	1 ¹ / ₂	—	2 ¹ / ₄	2 ¹³ /16	5 ¹⁵ /16
212	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	⁵ /8	—	—	1 ¹ / ₄	—	2	2 ⁹ / ₁₆	5 ¹¹ / ₁₆
	⁵ /8	¹ /2-20	7/16-20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	_	1/4	³ /16	—	1	1 ³ /8	1 ¹⁵ / ₁₆	5 ¹ /16
	1	⁷ /8 -1 4	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	_	1 ³ /8	1 ⁷ /8	2 ⁷ /16	6
01/	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	7/ ₈	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	—	1/4	⁹ /16	_	2	2 ¹ / ₂	3 ¹ / ₁₆	65/8
31/4	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	_	1/4	1/2	_	1 ⁵ /8	2 ¹ /8	2 ¹¹ /16	6 ¹ / ₄
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ / ₁₆	_	1 ⁷ /8	2 ³ /8	2 ¹⁵ /16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	—	1/4	1/2	—	1 ⁵ /8	2 ¹ /8	2 ¹¹ / ₁₆	6 ¹ / ₄
	2 ¹ / ₂	2 ¹ /4-12	17/8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	_	1/4	¹¹ / ₁₆	_	2 ¹ / ₄	2 ³ /4	3 ⁵ / ₁₆	67/8
4	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ / ₁₆	_	1 ⁷ /8	2 ³ /8	2 ¹⁵ /16	6 ¹ /2
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	7/ ₈	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	_	1/4	⁹ /16	_	2	2 ¹ /2	3 ¹ / ₁₆	6 ⁵ /8
	1	⁷ /8 -1 4	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	_	1 ³ /8	1 ⁷ /8	2 ⁷ /16	6
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ / ₁₆	_	1 ⁷ /8	2 ⁹ /16	2 ¹⁵ /16	6 ¹³ /16
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ / ₈	⁵ /8	—	_	1 ⁵ /8	_	2 ¹⁵ /16	3 ⁵ / ₁₆	7 ³ / ₁₆
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	7/ ₈	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	—	1/4	⁹ /16	_	2	211/16	3 ¹ / ₁₆	6 ¹⁵ /16
5	2 ¹ / ₂	2 ¹ /4-12	17/8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	—	1/4	11/16	—	2 ¹ / ₄	2 ¹⁵ /16	3 ⁵ / ₁₆	7 ³ / ₁₆
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	27/8	⁵ /8	_	_	1 ⁵ /8	_	2 ¹⁵ /16	3 ⁵ / ₁₆	7 ³ / ₁₆
	1	⁷ /8- 1 4	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ / ₁₆	—	1/4	⁷ / ₁₆	_	1 ³ /8	2 ¹ / ₁₆	2 ⁷ /16	6 ⁵ / ₁₆
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	_	1/4	1/2	_	1 ⁵ /8	2 ⁵ /16	2 ¹¹ / ₁₆	6 ⁹ /16
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ / ₁₆	—	1 ⁷ /8	2 ⁹ / ₁₆	3 ¹ / ₁₆	7 ⁵ / ₁₆
	4	3³/4-12	3-12	4	4.749	1	33/8	37/8	1/2	—	_	1 ¹ / ₂	_	2 ¹⁵ /16	3 ⁷ / ₁₆	7 ¹¹ / ₁₆
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	—	1/4	⁹ /16	_	2	211/16	3 ³ / ₁₆	7 ⁷ / ₁₆
6	2 ¹ / ₂	2 ¹ /4-12	17/8-12	3	3.124	1	2 ¹ /16	2 ³ /8	_	1/4	11/16	_	2 ¹ / ₄	2 ¹⁵ / ₁₆	3 ⁷ / ₁₆	7 ¹¹ / ₁₆
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	27/8	1/2	—	—	1 ¹ / ₂	_	2 ¹⁵ / ₁₆	37/16	7 ¹¹ / ₁₆
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	33/8	1/2	—	_	1 ¹ / ₂	_	2 ¹⁵ /16	37/16	7 ¹¹ / ₁₆
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ / ₈	1 ⁵ / ₁₆		1/4	7/16	_	1 ⁵ /8	2 ⁵ /16	2 ¹³ /16	7 ¹ / ₁₆

ZB + STROKE

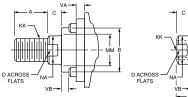

Side Tap Mount

Style MS4 1 - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods

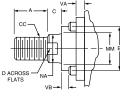
Tie Rod Retained Cartridge


E

Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges.

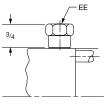

Side Tap Mount Style MS4 1 1/2" - 6" Bore

Removable Cartridge


Rod End Dimensions — see table 2 Thread Style 2 Thread Style 3

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended

"Special" Thread Style 0 Special thread, extension.


rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Straight Thread Port Adapters

ZB + STROKE

Used on 1 1/2" bore size only.

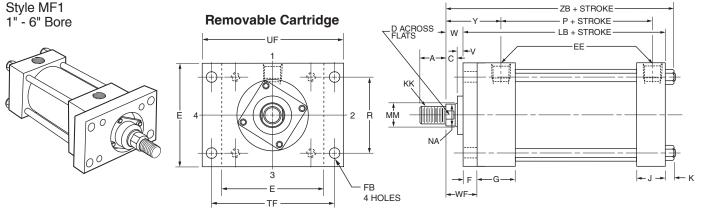
through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

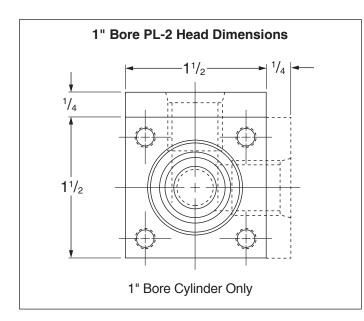
		E	E								Add S	Stroke	
Bore	Е	NPTF [⊖]	SAE*	F	G	J	κ	NT	TN	LB	LG	Р	SN
1‡		1/4	6	³ /8	1 ¹ / ₂	1	³ /16	10-24	⁹ /16	37/8	—	2 ¹ /8	2 ¹ / ₈
1 ¹ / ₂	2	3/8‡	6#	³ /8	1 ¹ / ₂	1	1/4	¹ /4-20	⁵ /8	4	35/8	2 ¹ /4	2 ¹ / ₄
2	2 ¹ /2	³ /8 [†]	6	³ /8	1 ¹ / ₂	1	⁵ /16	⁵ /16 -18	7/8	4	35/8	2 ¹ /4	2 ¹ / ₄
2 ¹ / ₂	3	³ /8 [†]	6	³ /8	1 ¹ / ₂	1	⁵ /16	³ /8-16	1 ¹ / ₄	4 ¹ /8	33/4	2 ³ /8	2 ³ /8
3 ¹ / ₄	3 ³ / ₄	1/2	10	⁵ /8	1 ³ / ₄	1 ¹ /4	³ /8	¹ /2-13	1 ¹ / ₂	4 ⁷ /8	4 ¹ / ₄	25/8	25/8
4	4 ¹ /2	¹ / ₂	10	⁵ /8	1 ³ / ₄	1 ¹ / ₄	³ /8	¹ /2-13	2 ¹ / ₁₆	4 ⁷ /8	4 ¹ / ₄	25/8	2 ⁵ /8
5	5 ¹ /2	1/2	10	⁵ /8	1 ³ / ₄	1 ¹ / ₄	⁷ /16	⁵ /8 -11	211/16	5 ¹ /8	4 ¹ / ₂	27/8	27/8
6	6 ¹ /2	3/4	12	3/4	2	1 1/2	⁷ /16	³ /4-10	3 ¹ / ₄	5 ³ /4	5	31/8	3 ¹ /8

^Θ NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

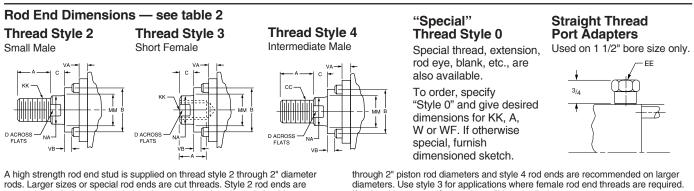
‡ Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.


■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.


Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

		Thr	ead			Rod E	nd Din	nensio	ns and	Enve	lope D	imens	ions A	ffected	by Ro	d Size	
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	А	+.000 002 B	с	D	NA	ND	v	VA	VB	w	WF	хт	Y	Add Stroke
Dole	1/2	7/16-20	⁵ /16-20	5/8	.999	3/8	3/8	7/16	1/4	1/4	_	-	⁵ /8	-	1 ¹⁵ /16	1 ¹⁵ /16	4 ¹¹ /16
1	5/8	¹ /2-20	⁷ / ₁₆ -20	³ /4	1.124	3/8	1/2	⁹ / ₁₆	1/4	1/4		<u> </u>	⁵ /8	<u> </u>	1 ¹⁵ /16	1 ¹⁵ /16	4 /16 4 ¹¹ /16
	⁵ /8	¹ /2 -20	⁷ /16-20	³ /4	1.124	3/8	1/2	⁹ / ₁₆	⁵ /16	/4	1/4	3/16		1	1 ¹⁵ /16	1 ¹⁵ /16	47/8
1 ¹ / ₂	1	7/8-14	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ / ₁₆	⁵ /16	1/2			1	· _	2 ⁵ /16	2 ⁵ /16	5 ¹ /4
	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	⁹ / ₁₆	11/32		1/4	3/16		1	1 ¹⁵ /16	1 ⁵ /16	4 ¹⁵ /16
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	5/8	1 ¹ /8	1 ⁵ / ₁₆	11/32	⁵ /8	_	_	1 ¹ / ₄	_	2 ⁹ /16	2 ⁹ /16	5 ⁹ /16
_	1	7/8-14	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	15/16	11/32		1/4	7/16		1 ³ / ₈	2 ⁵ /16	2 ⁵ /16	5 ⁵ /16
	1	7/8-14	³ /4-16	1 ¹ /8	1.499	1/2	7/8	15/16	7/16		1/4	7/16	_	1 ³ /8	2 ⁵ /16	2 ⁵ /16	5 ⁷ /16
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	7/16	3/4	_	_	1 ¹ / ₂	_	2 ¹³ /16	2 ¹³ /16	5 ¹⁵ /16
2 ¹ / ₂	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	5/8	1 ¹ /8	1 ⁵ / ₁₆	7/16	5/8	_	_	1 ¹ / ₄	_	2 ⁹ /16	2 ⁹ /16	5 ¹¹ /16
	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	⁹ / ₁₆	7/16		1/4	³ / ₁₆		1	1 ¹⁵ / ₁₆	1 ¹⁵ /16	5 ¹ /16
	1	7/8-14	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ / ₁₆	1/2	_	1/4	7/16	_	1 ³ /8	2 ⁷ /16	2 ⁷ /16	6
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	7/8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	1/2		1/4	⁹ / ₁₆	_	2	3 ¹ / ₁₆	3 ¹ / ₁₆	6 ⁵ /8
3 ¹ / ₄	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	1/2	_	1/4	1/2	_	1 ⁵ /8	211/16	2 ¹¹ /16	6 ¹ /4
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	1/2	_	1/4	⁹ /16	_	1 ⁷ /8	215/16	2 ¹⁵ /16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	⁵ /8	_	1/4	1/2	_	1 ⁵ /8	2 ¹¹ /16	2 ¹¹ /16	6 ¹ /4
	2 ¹ /2	2 ¹ /4-12	17/8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	⁵ /8	_	1/4	¹¹ / ₁₆	_	2 ¹ / ₄	3 ⁵ /16	3 ⁵ /16	67/8
4	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	⁵ /8	—	1/4	⁹ /16	—	1 ⁷ /8	215/16	2 ¹⁵ /16	6 ¹ /2
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	⁵ /8	_	1/4	⁹ / ₁₆	_	2	3 ¹ /16	3 ¹ /16	6 ⁵ /8
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	⁵ /8	_	1/4	⁷ / ₁₆	_	1 ³ / ₈	2 ⁷ /16	2 ⁷ /16	6
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	3/4	_	1/4	⁹ /16	_	1 ⁷ /8	215/16	2 ¹⁵ /16	6 ¹³ /16
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	3/4	⁵ /8	—	—	1 ⁵ /8	—	3 ⁵ /16	3 ⁵ /16	7 ³ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	3/4	—	1/4	⁹ /16	—	2	3 ¹ /16	3 ¹ /16	6 ¹⁵ /16
5	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	3/4	—	1/4	¹¹ / ₁₆	—	2 ¹ / ₄	3 ⁵ /16	3 ⁵ /16	7 ³ /16
	3	2 ³ / ₄ -12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	27/8	3/4	⁵ /8	_	—	1 ⁵ /8	—	3 ⁵ /16	3 ⁵ /16	7 ³ /16
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	3/4	—	1/4	⁷ / ₁₆	—	1 ³ /8	27/16	2 ⁷ /16	6 ⁵ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	3/4	—	1/4	1/2	—	1 ⁵ /8	211/16	211/16	6 ⁹ /16
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	⁷ /8	—	1/4	⁹ /16	—	1 ⁷ /8	3 ¹ /16	3 ¹ /16	7 ⁵ /16
	4	3 ³ /4-12	3-12	4	4.749	1	3 ³ /8	37/8	7/8	1/2	—	—	1 ¹ / ₂	—	3 ⁷ /16	3 ⁷ /16	7 ¹¹ /16
	2	1 ³ / ₄ -12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	⁷ /8	—	1/4	⁹ /16	—	2	3 ³ / ₁₆	3 ³ /16	7 ⁷ /16
6	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	7/8	_	1/4	¹¹ / ₁₆	—	2 ¹ / ₄	3 ⁷ /16	37/16	7 ¹¹ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	27/8	7/8	1/2	—	—	1 ¹ / ₂	—	3 ⁷ / ₁₆	3 ⁷ /16	7 ¹¹ / ₁₆
	3 ¹ /2	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	7/8	1/2	-	—	1 ¹ / ₂	-	37/16	3 ⁷ /16	7 ¹¹ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	7/8	_	1/4	7/16	—	1 ⁵ /8	2 ¹³ /16	2 ¹³ /16	7 ¹ / ₁₆

[†] On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available.


Head Rectangular Flange Mount

Maximum Pressure Ratings Push Application (MF1 Model only)

Bore	Rod		Bore	Rod	
Dia.	Dia.	PSI	Dia.	Dia.	PSI
	1/2	1900		1	900
1	⁵ /8	1500	1	1 ³ /8	750
-11/	⁵ /8	1200	4	1 ³ /4	500
1 ¹ / ₂	1	700		2	500
	⁵ /8	450		2 ¹ / ₂	600
2	1	700		1	600
_	1 ³ /8	400		1 ³ /8	600
	⁵ /8	500		1 ³ /4	500
2 ¹ / ₂	1	300	5	2	450
_ /2	1 ³ /8	500		2 ¹ / ₂	600
	1 ³ /4	300		3	450
	1	1000		3 ¹ / ₂	400
3 ¹ /4	1 ³ /8	650		1 ³ /8	700
Q / .	1 ³ /4	1000		1 ³ /4	700
	2	800		2	700
			6	2 ¹ /2	600
				3	600
				3 ¹ / ₂	600
				4	450

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

recommended where the workpiece is secured against the rod shoulder.

When the workpiece is not shouldered, style 2 rod ends are recommended

		E	EE									Add S	Stroke
Bore	Е		SAE*	F	FB	G	J	к	R	TF	UF	LB	Р
1‡		1/4	6	³ /8	1/4	1 ¹ / ₂	1	³ /16	1.08	2	2 ¹ /2	37/8	2 ¹ /8
1 ¹ / ₂	2	3/ ₈ †	6#	³ /8	⁵ /16	1 ¹ / ₂	1	1/4	1.43	2 ³ /4	3 ³ /8	4	2 ¹ / ₄
2	2 ¹ /2	³ /8 [†]	6	³ /8	³ /8	1 ¹ / ₂	1	⁵ /16	1.84	3 ³ /8	4 ¹ /8	4	2 ¹ /4
2 ¹ / ₂	3	3/84	6	³ /8	³ /8	1 ¹ / ₂	1	⁵ /16	2.19	3 ⁷ /8	4 ⁵ /8	4 ¹ /8	2 ³ / ₈
3 ¹ / ₄	3 ³ / ₄	1/2	10	⁵ /8	⁷ /16	1 ³ /4	1 ¹ /4	³ /8	2.76	4 ¹¹ / ₁₆	5 ¹ /2	4 ⁷ /8	25/8
4	4 ¹ /2	1/2	10	⁵ /8	⁷ /16	1 ³ /4	1 ¹ /4	³ /8	3.32	5 ⁷ /16	6 ¹ /4	4 ⁷ /8	2 ⁵ /8
5	5 ¹ /2	1/2	10	⁵ /8	⁹ /16	1 ³ /4	1 ¹ /4	⁷ /16	4.10	6 ⁵ /8	7 ⁵ /8	5 ¹ /8	27/8
6	6 ¹ /2	3/4	12	3/4	⁹ /16	2	1 ¹ / ₂	⁷ /16	4.88	7 ⁵ /8	8 ⁵ /8	5 ³ /4	3 ¹ /8

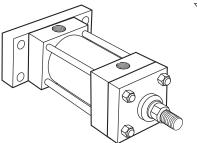
^e NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

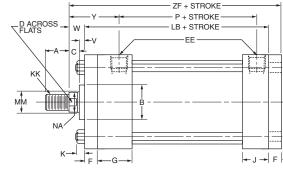
* SAE straight thread ports are indicated by port number.

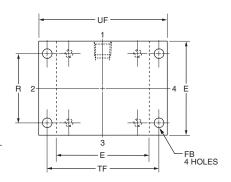
[‡] Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

■ 1" bore head is 1 3/4" x 1 1/2". See previous page.

- † On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available.
- # Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

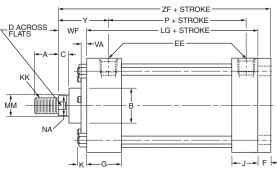

		Thr	ead	Ro	d Exter	sions	and E	nvelop	e Dim	ension	s Affec	ted by	Rod Size
	Rod Dia.	Style 4	Style 2 & 3		+.000 002								Add Stroke
Bore	MM	CC	KK	Α	В	С	D	NA	V	W	WF	Y	ZB
1	1/2	⁷ /16 -20	⁵ /16-24	⁵ /8	.999	³ /8	³ /8	⁷ /16	1/4	5/8	1	1 ¹⁵ /16	4 ¹¹ / ₁₆
	⁵ /8	¹ /2-20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	1/4	⁵ /8	1	1 ¹⁵ /16	4 ¹¹ / ₁₆
1 ¹ / ₂	5/8	¹ /2 -20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	1/4	⁵ /8	1	1 ¹⁵ /16	47/8
172	1	⁷ /8-14	³ /4 -16	1 1/8	1.499	¹ /2	⁷ /8	¹⁵ /16	1/2	1	1 ³ /8	2 ⁵ /16	5 ¹ /4
	5/8	¹ /2 -20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	1/4	⁵ /8	1	1 ¹⁵ /16	4 ¹⁵ /16
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	⁵ /8	1 ¹ /4	1 ⁵ /8	2 ⁹ /16	5 ⁹ /16
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	1/2	⁷ /8	¹⁵ /16	1/2	1	1 ³ /8	25/16	5 ⁵ /16
	1	⁷ /8 -14	³ /4 -16	1 ¹ /8	1.499	¹ /2	⁷ /8	¹⁵ /16	1/2	1	1 ³ /8	2 ⁵ /16	5 ⁷ /16
2 ¹ / ₂	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16	3/4	1 ¹ / ₂	1 ⁷ /8	2 ¹³ /16	5 ¹⁵ /16
L /2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	⁵ /8	1 ¹ / ₄	1 ⁵ /8	2%/16	5 ¹¹ /16
	⁵ /8	¹ /2 -20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	1/4	⁵ /8	1	1 ¹⁵ / ₁₆	5 ¹ /16
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	1/2	⁷ /8	¹⁵ /16	1/4	3/4	1 ³ /8	27/16	6
3 ¹ / ₄	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	¹ /2	1 ³ /8	2	3 ¹ / ₁₆	65/8
31/4	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	³ /8	1	1 ⁵ /8	211/16	6 ¹ /4
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ / ₁₆	¹ /2	1 ¹ /4	1 ⁷ /8	215/16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	³ /8	1	1 ⁵ /8	211/16	6 ¹ /4
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	23/8	⁵ /8	1 ⁵ /8	2 ¹ / ₄	35/16	67/8
4	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ / ₁₆	¹ /2	1 ¹ /4	1 ⁷ /8	215/16	6 ¹ /2
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	¹ /2	1 ³ /8	2	3 ¹ / ₁₆	65/8
	1	⁷ /8 -14	³ /4 -16	1 1/8	1.499	¹ /2	7/8	¹⁵ /16	1/4	3/4	1 ³ /8	27/16	6
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ /16	¹ /2	1 ¹ / ₄	1 ⁷ /8	215/16	6 ¹³ /16
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	⁵ /8	1 ⁵ /8	2 ¹ /4	3 ⁵ /16	7 ³ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	¹ /2	1 ³ /8	2	3 ¹ / ₁₆	6 ¹⁵ /16
5	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	⁵ /8	1 ⁵ /8	2 ¹ / ₄	3 ⁵ /16	7 ³ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	27/8	⁵ /8	1 ⁵ /8	2 ¹ /4	3 ⁵ /16	7 ³ /16
	1	⁷ /8 -14	³ /4 -16	1 1/8	1.499	¹ /2	7/8	¹⁵ /16	1/4	3/4	1 ³ /8	27/16	6 ⁵ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	³ /8	1	1 ⁵ /8	211/16	6 ⁹ /16
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ / ₁₆	³ /8	1 ¹ /8	1 ⁷ /8	3 ¹ / ₁₆	7 ⁵ /16
	4	33/4-12	3-12	4	4.749	1	3 ³ /8	37/8	¹ /2	1 ¹ / ₂	2 ¹ / ₄	3 ⁷ /16	7 ¹¹ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	³ /8	1 ¹ / ₄	2	3 ³ /16	7 ⁷ /16
6	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	¹ /2	1 ¹ / ₂	2 ¹ /4	3 ⁷ /16	7 ¹¹ / ₁₆
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	27/8	¹ /2	1 ¹ / ₂	2 ¹ /4	37/16	7 ¹¹ /16
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	¹ /2	1 ¹ / ₂	2 ¹ / ₄	3 ⁷ /16	7 ¹¹ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	1/4	7/8	1 ⁵ /8	213/16	7 ¹ / ₁₆

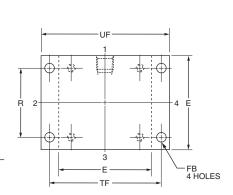

Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size


Medium-Duty Hydraulic Cylinders **PL-2 Series**

Cap Rectangular Flange Mount

Style MF2 1"-1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods




Tie Rod Retained Cartridge

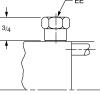
Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges.

Cap Rectangular Flange Mount Style MF2 1 1/2" - 6" Bore

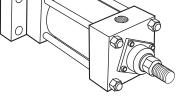
Removable Cartridge

Rod End Dimensions — see table 2 "Special" **Thread Style 3 Thread Style 4** Thread Style 0 **Thread Style 2** Intermediate Male Short Female Small Male Special thread, extension. rod eye, blank, etc., are also available.

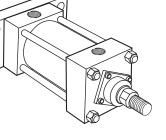
VB


D ACROSS

FLATS


To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Straight Thread Port **Adapters**


Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

D ACROSS FLATS

D ACROS FLATS

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder.

When the workpiece is not shouldered, style 2 rod ends are recommended

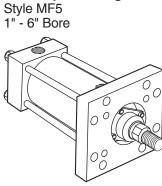
		E	E									A	dd Stro	ke
Bore	Е		SAE*	F	FB	G	J	К	R	TF	UF	LB	LG	Р
1‡		1/4	6	³ /8	1/4	1 ¹ / ₂	1	³ /16	1.08	2	2 ¹ /2	37/8	-	2 ¹ /8
1 ¹ / ₂	2	³ /8 [†]	6#	³ /8	⁵ /16	1 ¹ / ₂	1	1/4	1.43	2 ³ /4	3 ³ /8	4	35/8	2 ¹ /4
2	2 ¹ /2	³ /8 [†]	6	³ /8	³ /8	1 ¹ / ₂	1	⁵ /16	1.84	3 ³ / ₈	4 ¹ /8	4	35/8	2 ¹ / ₄
2 ¹ / ₂	3	3/ ₈ †	6	³ /8	³ /8	1 ¹ / ₂	1	⁵ /16	2.19	37/8	4 ⁵ /8	4½	3 ³ / ₄	2 ³ /8
3 ¹ / ₄	3 ³ / ₄	1/2	10	⁵ /8	⁷ /16	1 ³ /4	1 ¹ /4	³ /8	2.76	411/16	5 ¹ /2	-	4 ¹ / ₄	25/8
4	4 ¹ / ₂	1/2	10	⁵ /8	⁷ /16	1 ³ /4	1 ¹ /4	³ /8	3.32	5 ⁷ / ₁₆	6 ¹ /4	_	4 ¹ / ₄	25/8
5	5 ¹ /2	1/2	10	⁵ /8	⁹ /16	1 ³ /4	1 ¹ / ₄	⁷ /16	4.10	6 ⁵ /8	7 ⁵ /8	5 ¹ /8	4 ¹ / ₂	27/8
6	6 ¹ /2	3/4	12	³ /4	⁹ /16	2	1 ¹ / ₂	⁷ /16	4.88	7 ⁵ /8	8 ⁵ / ₈	5 ³ /4	5	3 ¹ /8

O NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

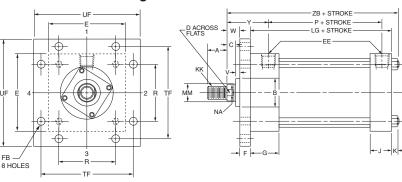
* SAE straight thread ports are indicated by port number.

■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.

† On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available. # Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.


‡ Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

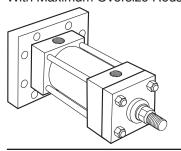
		Thr	ead	I	Rod En	d Dim	ension	s and	Envel	ope Di	mensi	ons Ai	fected	by Ro	d Size
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	А	+.000 002 B	с	D	NA	v	VA	VB	w	WF	Y	Add Stroke ZF
1	1/2	7/16-20	⁵ /16-24	⁵ /8	.999	3/8	3/8	⁷ / ₁₆	1/4	_	_	5/8	_	1 ¹⁵ /16	47/8
I	⁵ /8	¹ /2-20	7/16-20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	1/4	_	_	⁵ /8	_	1 ¹⁵ /16	47/8
	5/8	¹ /2-20	7/16-20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	_	1/4	³ / ₁₆	_	1	1 ¹⁵ /16	5
11/2	1	⁷ /8 -14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	1/2	_	_	1	_	2 ⁵ /16	5 ³ /8
	5/8	¹ /2-20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	_	1/4	³ /16	—	1	1 ¹⁵ /16	5
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	⁵ /8	—	_	1 ¹ / ₄	_	2 ⁹ /16	5 ⁵ /8
	1	⁷ /8 -14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	_	1 ³ /8	2 ⁵ /16	5 ³ /8
	1	⁷ /8 -1 4	³ /4-16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	_	1 ³ /8	2 ⁵ /16	5 ¹ /2
01/	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	3/4	_	_	1 ¹ / ₂	—	2 ¹³ /16	6
21/2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	⁵ /8	—	_	1 ¹ / ₄	—	2 ⁹ / ₁₆	5 ³ /4
	⁵ /8	¹ /2-20	⁷ /16-20	3/4	1.124	³ /8	1/2	⁹ / ₁₆	_	1/4	³ /16	_	1	1 ¹⁵ / ₁₆	5 ¹ /8
	1	⁷ /8-14	³ /4- 16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	_	1 ³ /8	27/16	6 ¹ / ₄
01/	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	7/8	1 ¹¹ /16	1 ¹⁵ / ₁₆	_	1/4	^{9/} 16	_	2	3 ¹ / ₁₆	67/8
31/4	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	_	1/4	1/2	_	1 ⁵ /8	2 ¹¹ /16	6 ¹ /2
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	_	1/4	^{9/} 16	_	1 ⁷ /8	2 ¹⁵ /16	6 ³ / ₄
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	_	1/4	1/2	_	1 ⁵ /8	2 ¹¹ /16	6 ¹ /2
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	_	1/4	¹¹ / ₁₆	_	2 ¹ / ₄	3 ⁵ /16	7 ¹ /8
4	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ /2	1 ¹¹ / ₁₆	_	1/4	^{9/} 16	—	1 ⁷ /8	2 ¹⁵ /16	6 ³ / ₄
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ /16	1 ¹⁵ / ₁₆	_	1/4	^{9/} 16	_	2	3 ¹ / ₁₆	67/8
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	_	1/4	⁷ / ₁₆	—	1 ³ /8	27/16	6 ¹ / ₄
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	^{9/} 16	—	1 ⁷ /8	215/16	7
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	⁵ /8	_	_	1 ⁵ /8	_	3 ⁵ /16	73/8
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	_	1/4	^{9/} 16	—	2	3 ¹ /16	7 ¹ /8
5	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	—	1/4	¹¹ / ₁₆	_	2 ¹ / ₄	3 ⁵ /16	7 ³ /8
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	27/8	⁵ /8	-	—	1 ⁵ /8	—	3 ⁵ /16	7 ³ /8
	1	⁷ /8 -14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ / ₁₆	—	1/4	⁷ / ₁₆	_	1 ³ /8	27/16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	—	1/4	1/2	—	1 ⁵ /8	211/16	6 ³ / ₄
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	_	1/4	^{9/} 16	—	1 ⁷ /8	3 ¹ / ₁₆	7 ⁵ /8
	4	33/4-12	3-12	4	4.749	1	3 ³ /8	37/8	1/2	-	—	1 ¹ / ₂	—	3 ⁷ /16	8
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	_	1/4	^{9/} 16	—	2	3 ³ /16	7 ³ /4
6	2 ¹ / ₂	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	_	1/4	¹¹ / ₁₆	—	2 ¹ / ₄	3 ⁷ /16	8
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	27/8	1/2	—	—	1 ¹ / ₂	—	3 ⁷ /16	8
	3 ¹ / ₂	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	1/2	-	—	1 ¹ / ₂	_	3 ⁷ /16	8
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ / ₁₆	_	1/4	⁷ / ₁₆	_	1 ⁵ /8	213/16	7 ³ /8


Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size

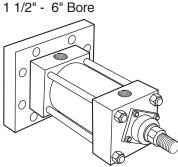
Removable Cartridge

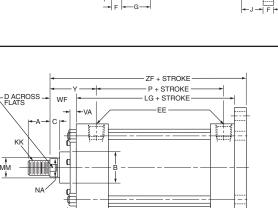
Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges

-ZE + STROKE


P + STROKE

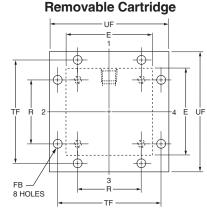
- LB + STROKE


EE


Cap Square Flange Mount

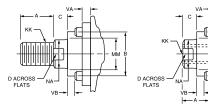
Style MF6 1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods

Cap Square Flange Mount Style MF6

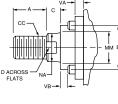


D ACROSS

мĥ

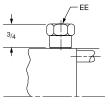

FB 8 HOLES

Tie Rod Retained Cartridge


Rod End Dimensions — see table 2 **Thread Style 2**

Thread Style 3 Short Female

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended


"Special" Thread Style 0

Special thread, extension. rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

		E	Ξ									A	dd Stro	ke
Bore	Е		SAE*	F	FB	G	J	к	R	TF	UF	LB	LG	Р
1‡		1/4	6	³ /8	1/4	1 ¹ / ₂	1	³ /16	1.08	2	2 ¹ /2	37/8	-	2 ¹ /8
1 ¹ / ₂	2	3/ ₈ †	6#	³ /8	⁵ /16	1 ¹ / ₂	1	1/4	1.43	2 ³ /4	3 ³ /8	4	35/8	2 ¹ / ₄
2	2 ¹ / ₂	3/84	6	³ /8	³ /8	1 ¹ / ₂	1	⁵ /16	1.84	3 ³ / ₈	4 ¹ / ₈	4	35/8	2 ¹ /4
2 ¹ /2	3	3/84	6	³ /8	³ /8	1 ¹ / ₂	1	⁵ /16	2.19	37/8	4 ⁵ /8	4 ¹ /8	33/4	2 ³ /8
3 ¹ / ₄	3 ³ / ₄	1/2	10	⁵ /8	⁷ /16	1 ³ /4	1 ¹ /4	³ /8	2.76	411/16	5 ¹ /2	47/8	4 ¹ / ₄	25/8
4	4 ¹ / ₂	1/2	10	⁵ /8	⁷ /16	1 ³ /4	1 ¹ /4	³ /8	3.32	5 ⁷ / ₁₆	6 ¹ / ₄	47/8	4 ¹ / ₄	25/8
5	5 ¹ /2	1/2	10	⁵ /8	⁹ /16	1 ³ /4	1 ¹ /4	⁷ /16	4.10	6 ⁵ /8	7 ⁵ /8	5 ¹ /8	4 ¹ / ₂	27/8
6	6 ¹ / ₂	3/4	12	3/4	⁹ /16	2	1 ¹ / ₂	⁷ /16	4.88	7 ⁵ /8	8 ⁵ /8	5 ³ /4	5	3 ¹ / ₈

O NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

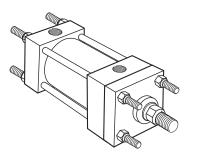
■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.

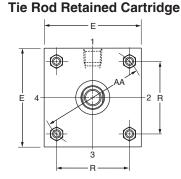
† On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available. # Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

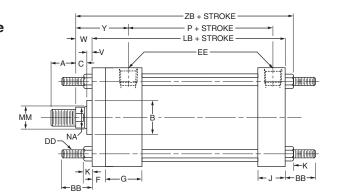
‡ Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

		Thr	ead		Rod En	d Dim	nensio	ns and	Envel	ope D	imens	ions A	ffecte	d by Ro	od Size	•
	Rod Dia.	Style 4	Style 2 & 3		+.000										Add S	Strok
Bore	MM	cc	KK	Α	B	С	D	NA	V	VA	VB	W	WF	Y	ZB	ZF
1	¹ /2	⁷ /16 -20	⁵ /16-24	⁵ /8	.999	³ /8	³ /8	⁷ /16	1/4	—	—	⁵ /8	_	1 ¹⁵ / ₁₆	4 ¹¹ /16	4 ⁷ ,
I	⁵ /8	¹ /2-20	⁷ /16-20	3/4	1.124	³ /8	1/2	⁹ /16	1/4	—	—	⁵ /8	—	1 ¹⁵ / ₁₆	4 ¹¹ / ₁₆	47
1 ¹ / ₂	⁵ /8	¹ /2-20	⁷ /16 -20	3/4	1.124	³ /8	¹ /2	⁹ /16	¹ /4**	1/4	³ /16	⁵ /8	1	1 ¹⁵ / ₁₆	47/8	5
172	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ /16	¹ /2	—	-	1	_	2 ⁵ /16	5 ¹ /4	5
	⁵ /8	¹ /2-20	⁷ / ₁₆ -20	³ /4	1.124	³ /8	1/2	⁹ /16	¹ /4**	1/4	³ /16	⁵ /8	1	1 ¹⁵ / ₁₆	4 ¹⁵ / ₁₆	5
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	⁵ /8	—	-	1 ¹ / ₄	_	2 ⁹ / ₁₆	5 ⁹ /16	5 ⁸
	1	⁷ /8-14	³ /4-16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ /16	¹ /2**	1/4	⁷ /16	1	1 ³ /8	2 ⁵ /16	5 ⁵ /16	5
	1	⁷ /8-14	³ /4-16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ /16	1/2**	1/4	7/16	1	1 ³ /8	2 ⁵ /16	5 ⁷ /16	5
2 ¹ / ₂	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ /16	³ /4	—	—	1 ¹ / ₂	_	2 ¹³ /16	5 ¹⁵ /16	6
21/2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	⁵ /8	—	—	1 ¹ / ₄	_	2 ⁹ /16	5 ¹¹ /16	5
	⁵ /8	¹ /2-20	⁷ /16-20	3/4	1.124	³ /8	1/2	⁹ /16	1/4**	1/4	³ /16	⁵ /8	1	1 ¹⁵ /16	5 ¹ /16	5
	1	⁷ /8-14	³ /4-16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ /16	1/4**	1/4	⁷ /16	3/4	1 ³ /8	2 ⁷ /16	6	6
3 ¹ / ₄	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	¹ /2**	1/4	⁹ /16	1 ³ /8	2	3 ¹ / ₁₆	6 ⁵ /8	6
3 74	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	³ /8**	1/4	1/2	1	1 ⁵ /8	2 ¹¹ /16	6 ¹ /4	6
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ /2	1 ¹¹ /16	¹ /2**	1/4	⁹ /16	1 ¹ / ₄	1 ⁷ /8	2 ¹⁵ /16	6 ¹ /2	6
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	³ /8**	1/4	1/2	1	1 ⁵ /8	2 ¹¹ /16	6 ¹ /4	6
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	⁵ /8**	1/4	11/16	1 ⁵ /8	2 ¹ / ₄	3 ⁵ /16	6 ⁷ /8	7
4	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ /16	1/2**	1/4	⁹ /16	1 ¹ / ₄	1 7/8	2 ¹⁵ /16	6 ¹ /2	6
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	¹ /2**	1/4	⁹ /16	1 ³ /8	2	3 ¹ / ₁₆	6 ⁵ /8	6
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	1/4**	1/4	7/16	3/4	1 ³ /8	2 ⁷ /16	6	6
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16	1/2**	1/4	⁹ /16	1 ¹ / ₄	1 ⁷ /8	2 ¹⁵ /16	6 ¹³ /16	
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	⁵ /8	_	_	1 ⁵ /8	_	3 ⁵ /16	7 ³ /16	7
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	7/8	1 ¹¹ / ₁₆	1 ¹⁵ /16	1/2**	1/4	⁹ /16	1 ³ /8	2	3 ¹ / ₁₆	6 ¹⁵ /16	7
5	2 ¹ / ₂	2 ¹ /4-12	17/8-12	3	3.124	1	2 ¹ /16	2 ³ /8	⁵ /8**	1/4	11/16	1 ⁵ /8	2 ¹ / ₄	3 ⁵ /16	7 ³ /16	7
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	2 ⁷ /8	⁵ /8	_	—	1 ⁵ /8	_	3 ⁵ /16	7 ³ /16	7
	1	⁷ /8 -1 4	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	1/4**	1/4	7/16	3/4	1 ³ /8	27/16	6 ⁵ /16	6
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	³ /8**	1/4	1/2	1	1 ⁵ /8	211/16	6 ⁹ /16	6
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16	³ /8**	1/4	⁹ /16	1 ¹ /8	1 ⁷ /8	3 ¹ /16	7 ⁵ /16	7
	4	33/4-12	3-12	4	4.749	1	3 ³ /8	37/8	3/8	—	—	1 ¹ / ₂	_	3 ⁷ /16	7 ¹¹ /16	8
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	7/8	1 ¹¹ / ₁₆	1 ¹⁵ /16	³ /8**	1/4	⁹ /16	1 ¹ / ₄	2	3 ³ /16	7 ⁷ /16	7
6	2 ¹ / ₂	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	1/2**	1/4	11/16	1 ¹ / ₂	2 ¹ / ₄	3 ⁷ /16	7 ¹¹ /16	8
	3	23/4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	27/8	1/2	_		1 ¹ / ₂	_	3 ⁷ /16	7 ¹¹ / ₁₆	8
	3 ¹ / ₂	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	1/2	_		1 ¹ / ₂	_	37/16	7 ¹¹ / ₁₆	8
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	1/4**	1/4	7/16	7/8	1 ⁵ /8	2 ¹³ /16	7 ¹ /16	73

Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size

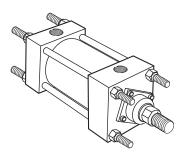

** For all MF5 mounts; and MF6 mounts with max. oversized rods.



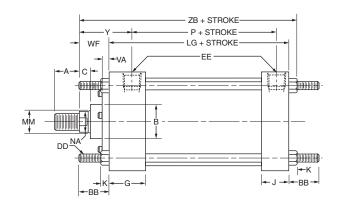

Medium-Duty Hydraulic Cylinders **PL-2 Series**

Tie Rods Extended Mount

Style MX1 1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods

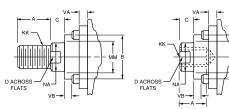


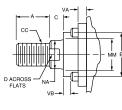
Tie rods can be extended:
Both Ends — Model MX1 Cap End — Model MX2
Cap End — Model MX2
Head End — Model MX3


Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges.

Tie Rods Extended Mount

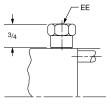
Style MX1 1 1/2" - 6" Bore


Removable Cartridge BF 2 ۲ 3 R


Rod End Dimensions — see table 2 **Thread Style 2**

Thread Style 4 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended


"Special" Thread Style 0

Special thread, extension. rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Straight Thread Port Adapters

Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

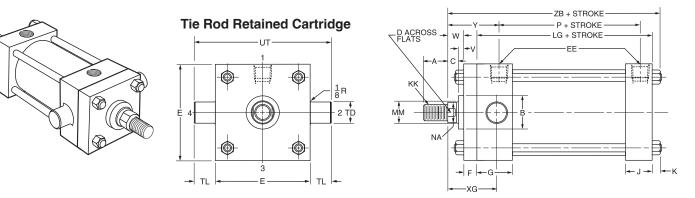
					E	E						A	dd Strok	е
Bore	AA	BB	DD	Е	NPTF ⊖	SAE*	F	G	J	κ	R	LB	LG	Р
1‡	1.53	3/4	10-24		1/4	6	³ /8	1 ¹ / ₂	1	³ /16	1.08	37/8	3 ¹ / ₂	2 ¹ /8
1 ¹ / ₂	2.02	1	1/4-28	2	³ / ₈ †	6#	³ /8	1 ¹ / ₂	1	1/4	1.43	4	3 ⁵ /8	2 ¹ / ₄
2	2.6	1 ¹ /8	⁵ / ₁₆ -24	2 ¹ /2	3/8‡	6	³ /8	1 ¹ / ₂	1	⁵ /16	1.84	4	3 ⁵ /8	2 ¹ /4
2 ¹ /2	3.1	1 ¹ /8	⁵ / ₁₆ -24	3	3/ ₈ †	6	³ /8	1 ¹ / ₂	1	⁵ /16	2.19	4 ¹ / ₈	33/4	2 ³ /8
3 ¹ / ₄	3.9	1 ³ /8	³ /8-24	3 ³ / ₄	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	2.76	4 ⁷ /8	4 ¹ / ₄	2 ⁵ /8
4	4.7	1 ³ /8	³ /8-24	4 ¹ /2	1/2	10	-	1 ³ /4	1 ¹ /4	3/8	3.32	47/8	4 ¹ / ₄	25/8
5	5.8	1 ¹³ /16	¹ /2-20	5 ¹ /2	1/2	10	⁵ /8	1 ³ /4	1 ¹ /4	7/16	4.10	5 ¹ /8	4 ¹ / ₂	27/8
6	6.9	1 ¹³ /16	¹ /2-20	6 ¹ /2	3/4	12	³ /4	2	1 ¹ / ₂	⁷ /16	4.88	5 ³ /4	5	3 ¹ /8

O NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

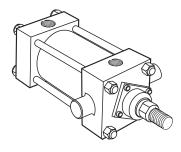
■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.

† On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available. # Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

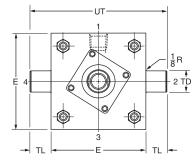

‡ Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

		Thr	ead		Roc	d End D	Dimen	sions a	and En	velop	e Dime	ension	s Affe	cted by	/ Rod S	Size
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	Α	+.000 002 B	BF	с	D	NA	v	VA	VB	w	WF	Y	Add Stroke
Dore	1/2	7/16-20	⁵ /16-24	5/8	.999		3/8	3/8	7/16	1/4			5/8	-	1 ¹⁵ /16	4 ¹¹ /16
1	5/8	¹ /2-20	⁷ / ₁₆ -20	³ /4	1.124		3/8	1/2	⁹ /16	1/4	<u> </u>		5/8		1 ¹⁵ /16	4 ¹¹ /16
	5/8	¹ /2-20	⁷ / ₁₆ -20	3/4	1.124	1.968	3/8	1/2	⁹ /16	/4	1/4	3/16	70	1	1 ¹⁵ /16	47/8
1 ¹ / ₂	1	7/8-14	³ /4-16	1 ¹ /8	1.499	1.000	1/2	7/8	¹⁵ /16	1/2	/4	/10	1	· _	2 ⁵ /16	5 ¹ /4
	⁵ /8	1/2-20	⁷ / ₁₆ -20	3/4	1.124	1.968	3/8	1/2	⁹ /16		1/4	3/16	· -	1	1 ¹⁵ /16	4 ¹⁵ /16
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999		5/8	1 ¹ /8	1 ⁵ /16	5/8			1 ¹ / ₄	· -	2 ⁹ / ₁₆	5 ⁹ /16
	1	7/8-14	³ /4-16	1 ¹ /8	1.499	2.468	1/2	7/8	¹⁵ /16		1/4	7/16		1 ³ /8	2 ⁵ /16	5 ⁵ /16
	1	7/8-14	³ /4-16	1 ¹ /8	1.499	2.468	1/2	7/8	¹⁵ /16		1/4	7/16	_	1 ³ /8	2 ⁵ /16	5 ⁷ /16
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374		3/4	1 ¹ /2	1 ¹¹ / ₁₆	3/4	_	_	1 ¹ / ₂		2 ¹³ /16	5 ¹⁵ /16
2 ¹ / ₂	1 ³ /8	1 ¹ / ₄ -12	1-14	1 ⁵ /8	1.999	_	5/8	1 ¹ /8	1 ⁵ /16	5/8	_	_	1 ¹ / ₄	1 ⁵ /8	2 ⁹ /16	5 ¹¹ /16
	5/8	1/2-20	7/16-20	3/4	1.124	1.968	3/8	1/2	⁹ /16	_	1/4	³ / ₁₆	_	1	1 ⁵ /16	5 ¹ /16
	1	⁷ /8-14	³ /4-16	1 ¹ /8	1.499	2.468	1/2	7/8	¹⁵ /16	_	1/4	7/16	_	1 ³ /8	27/16	6
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	3.735	7/8	1 ¹¹ / ₁₆	1 ¹⁵ /16	_	1/4	⁹ /16	_	2	3 ¹ / ₁₆	6 ⁵ /8
3 ¹ / ₄	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	2.968	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2	_	1 ⁵ /8	211/16	6 ¹ /4
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3.735	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ /16	_	1 7/8	2 ¹⁵ /16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	2.968	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2	_	1 ⁵ /8	211/16	6 ¹ / ₄
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	4.312	1	2 ¹ /16	2 ³ /8	_	1/4	11/16	_	2 ¹ / ₄	3 ⁵ /16	67/8
4	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3.735	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ /16	_	1 ⁷ /8	2 ¹⁵ /16	6 ¹ /2
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	3.735	7/8	1 ¹¹ / ₁₆	1 ¹⁵ /16	_	1/4	⁹ /16	_	2	3 ¹ / ₁₆	6 ⁵ /8
	1	⁷ /8-14	³ /4-16	1 ¹ /8	1.499	2.468	1/2	⁷ /8	¹⁵ /16	_	1/4	⁷ / ₁₆	_	1 ³ /8	27/16	6
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3.735	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ /16	_	1 ⁷ /8	215/16	6 ¹³ / ₁₆
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	—	1	3	3 ³ /8	⁵ /8	—	—	1 ⁵ /8	—	3 ⁵ /16	7 ³ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	3.735	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	_	1/4	⁹ /16	—	2	3 ¹ / ₁₆	6 ¹⁵ /16
5	2 ¹ /2	2 ¹ /4-12	17/8-12	3	3.124	4.312	1	2 ¹ / ₁₆	2 ³ /8	—	1/4	¹¹ / ₁₆	—	2 ¹ / ₄	35/16	7 ³ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	—	1	2 ⁵ /8	27/8	⁵ /8	_	—	1 ⁵ /8	_	3 ⁵ /16	7 ³ /16
	1	⁷ /8-14	³ /4-16	1 ¹ /8	1.499	2.468	1/2	7/8	¹⁵ /16	—	1/4	⁷ / ₁₆	—	1 ³ /8	27/16	6 ⁵ / ₁₆
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	2.968	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2	—	1 ⁵ /8	211/16	6 ⁹ /16
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3.625	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	—	1/4	⁹ /16	—	1 ⁷ /8	3 ¹ / ₁₆	7 ⁵ /16
	4	3 ³ /4-12	3-12	4	4.749	—	1	3 ³ /8	37/8	1/2	-	—	1 ¹ / ₂	—	37/16	711/16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	3.735	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ / ₁₆	_	1/4	⁹ /16	_	2	3 ³ / ₁₆	7 ⁷ /16
6	2 ¹ / ₂	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	4.312	1	2 ¹ /16	2 ³ /8		1/4	¹¹ / ₁₆	—	2 ¹ / ₄	37/16	7 ¹¹ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	—	1	25/8	27/8	1/2	—	—	1 ¹ / ₂	—	37/16	7 ¹¹ /16
	3 ¹ / ₂	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	_	1	3	3 ³ /8	1/2	_	_	1 ¹ / ₂	_	3 ⁷ /16	7 ¹¹ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	2.968	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	7/16		1 ⁵ /8	213/16	7 ¹ / ₁₆

Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size

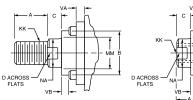

Head Trunnion Mount

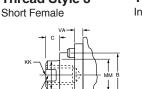
Style MT1 1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods

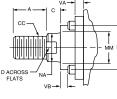


Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges.

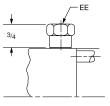
Head Trunnion Mount Style MT1 1 1/2" - 6" Bore


Removable Cartridge




Rod End Dimensions — see table 2 Thread Style 2 Thread Style 3

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended


"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Straight Thread Port Adapters

Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

		EE	E					+.000 TD			Add S	Stroke
Bore	Е	NPTF⊖	SAE*	F	G	J	к	001	TL	UT	LG	Р
1‡		1/4	6	³ /8	1 ¹ / ₂	1	³ /16	.750	³ /4	3	3 ¹ / ₂	2 ¹ /8
1 ¹ / ₂	2	3/ ₈ †	6#	³ /8	1 ¹ / ₂	1	1/4	1.000	1	4	35/8	2 ¹ /4
2	2 ¹ / ₂	3/8†	6	³ /8	1 ¹ / ₂	1	⁵ /16	1.000	1	4 ¹ / ₂	35/8	2 ¹ / ₄
2 ¹ /2	3	3/8†	6	³ /8	1 ¹ / ₂	1	⁵ /16	1.000	1	5	33/4	2 ³ /8
3 ¹ / ₄	3 ³ / ₄	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1.000	1	5 ³ /4	4 ¹ / ₄	25/8
4	4 ¹ / ₂	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1.000	1	6 ¹ /2	4 ¹ / ₄	25/8
5	5 ¹ /2	1/2	10	⁵ /8	1 ³ /4	1 ¹ /4	⁷ /16	1.000	1	7 ¹ / ₂	4 ¹ / ₂	27/8
6	6 ¹ / ₂	3/4	12	3/4	2	1 ¹ / ₂	⁷ /16	1.375	1 ³ /8	9 ¹ / ₄	5	3 ¹ /8

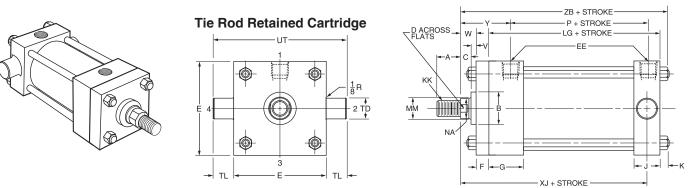
O NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.

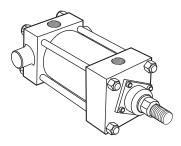
† On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available.

Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

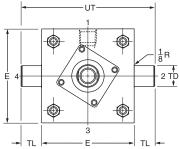

Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

able 2—Rod					· ·											
		Thr	ead		Roc	End	Dimen	sions a	and Er	velop	e Dime	ension	s Affe	cted by	Rod S	Size
_	Rod Dia.	Style 4	Style 2 & 3	_	+.000 002	_										Add Stroke
Bore	MM	CC	KK	Α	B	C	D	NA	V	VA	VB	W	WF	XG	Y	ZB
1	1/2	⁷ /16 -20	⁵ / ₁₆ -24	⁵ /8	.999	³ /8	³ /8	⁷ /16	1/4			⁵ /8		1 ³ / ₄	1 ¹⁵ /16	4 ¹¹ /16
	⁵ /8	¹ /2-20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	1/4	—	—	⁵ /8		1 ³ /4	1 ¹⁵ /16	4 ¹¹ / ₁₆
1 ¹ / ₂	⁵ /8	1/2-20	⁷ /16-20	³ /4	1.124	³ /8	1/2	⁹ /16	_	1/4	³ / ₁₆	-	1	1 ³ /4	1 ¹⁵ /16	47/8
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	1/2			1		2 ¹ /8	2 ⁵ /16	5 ¹ /4
	⁵ /8	¹ /2-20	⁷ / ₁₆ -20	3/4	1.124	³ /8	1/2	⁹ /16	—	1/4	³ /16	—	1	1 ³ /4	1 ¹⁵ /16	4 ¹⁵ /16
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	⁵ /8	—	—	1 ¹ / ₄	—	2 ³ /8	2 ⁹ /16	5 ⁹ /16
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	_	1/4	⁷ / ₁₆		1 ³ /8	2 ¹ /8	2 ⁵ /16	5 ⁵ /16
	1	⁷ /8 -14	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	_	1/4	⁷ / ₁₆		1 ³ /8	2 ¹ /8	25/16	57/16
2 ¹ / ₂	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16	3/4		_	1 ¹ / ₂		25/8	213/16	5 ¹⁵ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	⁵ /8			1 ¹ / ₄		2 ³ /8	2 ⁹ /16	5 ¹¹ /16
	⁵ /8	¹ /2 -20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	_	1/4	³ /16		1	1 ³ /4	1 ¹⁵ /16	5 ¹ /16
	1	⁷ /8 -1 4	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	_	1/4	⁷ /16		1 ³ /8	2 ¹ /4	27/16	6
3 ¹ / ₄	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ /16	1 ¹⁵ /16	_	1/4	⁹ /16		2	27/8	3 ¹ /16	65/8
0,1	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2	_	1 ⁵ /8	2 ¹ /2	211/16	6 ¹ /4
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16		1/4	⁹ /16		1 ⁷ /8	2 ³ /4	215/16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2	_	1 ⁵ /8	2 ¹ /2	211/16	6 ¹ /4
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	_	1/4	¹¹ / ₁₆		2 ¹ / ₄	3 ¹ /8	3 ⁵ /16	67/8
4	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16		1/4	⁹ /16		1 ⁷ /8	2 ³ / ₄	215/16	6 ¹ /2
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	_	1/4	⁹ /16		2	27/8	3 ¹ / ₁₆	6 ⁵ /8
	1	⁷ /8 -1 4	³ /4 -16	1 ¹ /8	1.499	¹ /2	⁷ /8	¹⁵ /16	_	1/4	⁷ / ₁₆		1 ³ /8	2 ¹ / ₄	27/16	6
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16	_	1/4	⁹ /16		1 ⁷ /8	2 ³ / ₄	2 ¹⁵ /16	6 ¹³ /16
	3 ¹ / ₂	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	⁵ /8			1 ⁵ /8		3 ¹ /8	3 ⁵ /16	7 ³ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	_	1/4	⁹ /16	—	2	27/8	3 ¹ / ₁₆	6 ¹⁵ /16
5	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	—	1/4	¹¹ / ₁₆	—	2 ¹ / ₄	3 ¹ /8	3 ⁵ / ₁₆	7 ³ / ₁₆
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	27/8	⁵ /8	—	—	1 ⁵ /8	—	3 ¹ /8	3 ⁵ / ₁₆	7 ³ /16
	1	⁷ /8 -14	³ /4 -16	1 ¹ /8	1.499	¹ /2	⁷ /8	¹⁵ /16	—	1/4	⁷ / ₁₆	—	1 ³ /8	2 ¹ / ₄	27/16	6 ⁵ / ₁₆
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	—	1/4	1/2	—	1 ⁵ /8	2 ¹ /2	211/16	6 ⁹ / ₁₆
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ /16	—	1/4	⁹ / ₁₆	—	1 ⁷ /8	27/8	3 ¹ / ₁₆	7 ⁵ / ₁₆
	4	33/4-12	3-12	4	4.749	1	3 ³ / ₈	37/8	1/2	_	_	1 ¹ / ₂	_	3 ¹ / ₄	37/16	7 ¹¹ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	—	1/4	⁹ /16	—	2	3	3 ³ / ₁₆	7 ⁷ / ₁₆
6	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	—	1/4	¹¹ / ₁₆	_	2 ¹ / ₄	3 ¹ / ₄	3 ⁷ /16	7 ¹¹ / ₁₆
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	27/8	1/2	—	_	1 ¹ / ₂	_	3 ¹ / ₄	3 ⁷ /16	7 ¹¹ /16
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	1/2	_	_	1 ¹ / ₂	_	3 ¹ / ₄	3 ⁷ /16	7 ¹¹ / ₁₆
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	⁷ / ₁₆	—	1 ⁵ /8	2 ⁵ /8	2 ¹³ /16	7 ¹ / ₁₆

Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size

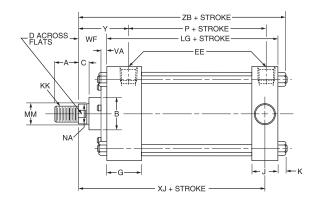

Cap Trunnion Mount

Style MT2 1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods



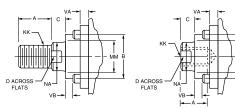
Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges.

Cap Trunnion Mount Style MT2 1 1/2" - 6" Bore


Removable Cartridge

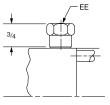
Thread Style 4

Intermediate Male


D ACROSS FLATS

Rod End Dimensions — see table 2 **Thread Style 2 Thread Style 3**

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended


"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Straight Thread **Port Adapters**

Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

		EE						+.000 TD			Add S	Stroke
Bore	Е		SAE*	F	G	J	κ	001	TL	UT	LG	Р
1‡		1/4	6	³ /8	1 ¹ / ₂	1	³ /16	.750	3/4	3	3 ¹ / ₂	2 ¹ /8
1 ¹ / ₂	2	3/8†	6#	³ /8	1 ¹ / ₂	1	1/4	1.000	1	4	35/8	2 ¹ / ₄
2	2 ¹ /2	3/ ₈ †	6	³ /8	1 ¹ / ₂	1	⁵ /16	1.000	1	4 ¹ / ₂	3 ⁵ /8	2 ¹ / ₄
2 ¹ / ₂	3	3/ ₈ †	6	³ /8	1 ¹ / ₂	1	⁵ /16	1.000	1	5	3 ³ / ₄	2 ³ /8
3 ¹ / ₄	3 ³ / ₄	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1.000	1	5 ³ /4	4 ¹ / ₄	25/8
4	4 ¹ / ₂	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1.000	1	6 ¹ /2	4 ¹ / ₄	25/8
5	5 ¹ /2	1/2	10	⁵ /8	1 ³ /4	1 ¹ /4	⁷ /16	1.000	1	7 ¹ / ₂	4 ¹ / ₂	27/8
6	6 ¹ /2	3/4	12	³ /4	2	1 ¹ / ₂	7/16	1.375	1 ³ /8	9 ¹ / ₄	5	3 ¹ /8

⊖ NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.

† On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available. # Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

‡ Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

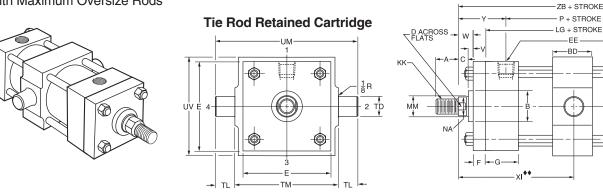
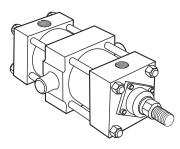
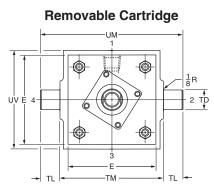
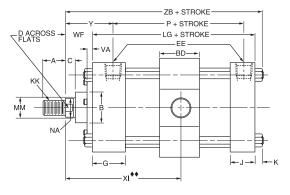

		Thr	ead		Rod	End I	Dimens	sions a	nd Er	velop	e Dime	ension	s Affe	cted by	Rod S	Size
_	Rod Dia.	Style 4	Style 2 & 3		+.000 002	-	_									Add Stroke
Bore	1/2	CC	KK ⁵ /16-24	A	B .999	C	D	NA	V	VA	VB	W	WF	XJ 4	Y 1 ¹⁵ /16	ZB 4 ¹¹ / ₁₆
1	5/8			³ /4		³ /8	³ /8	⁹ /16	1/4	-		5/8		4	1 ¹⁵ /16	. ,
	5/8 5/8	¹ /2-20	⁷ / ₁₆ -20	³ /4	1.124	³ /8	1/2	⁹ /16	'/4	1/4	³ /16	3/8	 	4 4 ¹ /8	1 ¹⁵ /16 1 ¹⁵ /16	4 ¹¹ / ₁₆ 4 ⁷ / ₈
1 ¹ / ₂	³ /8 1	⁷ /8-14	³ /4 -16	^{9/4} 1 ¹ /8	1.124	⁰ /8	1/2	⁹ /16 ¹⁵ /16	1/2	'/4	9/16	1		4 ¹ / ₈	2 ⁵ /16	4 ⁷ /8 5 ¹ /4
	5/8	¹ /2-20	⁷ /16-20	³ /4	1.124	3/8	7/8	^{9/16}	./2	1/4	³ /16	 	1	4 ⁻ /2 4 ¹ /8	2°/16 1 ¹⁵ /16	5 ⁻ /4 4 ¹⁵ / ₁₆
2	³ /8	¹ /2-20	1-14	^{9/4} 1 ⁵ /8	1.124	5/8	1/2	⁵ /16 1 ⁵ /16	5/8	./4	716	<u> </u>		4 ⁻ /8 4 ³ /4	2 ⁹ /16	4 ¹⁰ /16 5 ⁹ /16
2	1 7/8	⁷ /8-12	³ /4-16	1°/8 1 ¹ /8	1.499	1/2	1 ¹ /8	¹⁵ /16	-/8	1/4	7/16	1 ·74	1 ³ /8	4°/4 4 ¹ /2	2°/16 2 ⁵ /16	5°/16 5 ⁵ /16
	1	⁷ /8-14	³ /4-16	1 1/8 1 1/8	1.499	1/2		¹⁵ /16		1/4	7/16		1 ⁻⁷⁸	4 ⁻ /2 4 ⁵ /8	2 ^{-/16} 2 ⁵ /16	5 ⁷ /16
	1 ³ /4	¹ /8-14 1 ¹ /2-12	^{-/4-10}	2	2.374	3/4	7/8	^{10/16} 1 ¹¹ /16	3/4	.74	-/16	<u> </u>	1%	4°/8	2°/16 2 ¹³ /16	5'/16 5 ¹⁵ /16
21/2	1°/4 1 ³ /8	1 ⁻ /2-12	1-14	∠ 1⁵/8	2.374	5/8	1 ¹ /2	1 /16 1 ⁵ /16	5/8			1 '/2 1 1/4	1 ⁵ /8	5 ⁻ /8	2 ⁹ /16	5 ¹³ /16 5 ¹¹ /16
	5/8	¹ /2-20	⁷ / ₁₆ -20	³ /4	1.124	³ /8	1 ¹ /8	⁹ /16		1/4	³ /16		1-78 1	4 ¹ / ₈	1 ¹⁵ /16	5 ¹ /16
	^{-7/8}	⁷ /8-14	³ /4 -16	^{9/4} 1 ¹ /8	1.124	¹ /2	1/2	⁹ /16 ¹⁵ /16		1/4	⁷ /16		1 ³ /8	4 [.] /4	2 ⁷ /16	5 [.] /16
	2	^{1/8-14} 1 ³ /4-12	^{-/4-10} 1 ¹ /2-12	1 ^{-/8} 2 ¹ /4	2.624	7/8	⁷ /8 1 ¹¹ /16	^{10/16} 1 ^{15/16}	_	1/4	⁹ /16		1%	5 5 ⁵ /8	2 ¹ /16	6 ⁵ /8
3 ¹ / ₄	1 ³ /8	1 ^{-/4-12}	1-14	2.74 1 ⁵ /8	1.999	5/8		1 ^{-7/16} 1 ⁵ /16		1/4	1/2			5 ⁻ /8	2 ¹¹ / ₁₆	6 ¹ /4
	1 ^{-7/8}	1 ¹ /2-12	1 ⁻¹⁴	2	2.374	³ /4	1 ¹ /8	1 ⁻⁷¹⁶ 1 ¹¹ /16		1/4	9/16	_	1 ^{-7/8}	5 ¹ /2	2 ¹⁵ /16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	2 1 ⁵ /8	1.999	5/8	1 ¹ /2 1 ¹ /8	1 /16 1 ⁵ /16	_	1/4	1/2		1 /8 1 ⁵ /8	5 /2 5 ¹ /4	2 ^{1/16} 2 ¹¹ /16	6 ¹ /4
	2 ¹ /2	2 ¹ /4-12	17/8-12	3	3.124	1		2 ³ /8	_	1/4	11/16		2 ¹ / ₄	5 ⁷ /8	2 /16 3 ⁵ /16	6 ⁷ /8
4	1 ³ /4	1 ¹ /2-12	1 ^{/8-12}	2	2.374	3/4	2 ¹ /16 1 ¹ /2	1 ¹¹ / ₁₆	_	1/4	9/16	_	2 /4 1 ⁷ /8	5 /8	2 ¹⁵ /16	6 ¹ /2
-	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	7/8	1 ¹ /2 1 ¹¹ /16	1 /16 1 ¹⁵ /16	_	1/4	⁹ /16		2	5 /2 5 ⁵ /8	3 ¹ /16	6 ⁵ /8
	1	⁷ /8-14	³ /4-16	2 /4 1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	_	1/4	7/16	_	1 ³ /8	5	2 ⁷ /16	6
	1 ³ /4	⁷⁸⁻¹⁴ 1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	¹ /8 1 ¹ /2	1 ¹¹ /16	_	1/4	^{9/16}		17/8 17/8	5 ³ /4	2 /16 2 ¹⁵ /16	6 ¹³ /16
	1 /4 3 ¹ /2	3 ¹ /4-12	2 ¹ /2-12	2 3 ¹ /2	4.249	1	3	3 ³ /8	5/8	/4	/16	1 ⁵ /8	1 /8	6 ¹ /8	3 ⁵ /16	7 ³ /16
	2	1 ³ / ₄ -12	1 ¹ /2-12	2 ¹ /4	2.624	7/8	1 ¹¹ /16	1 ¹⁵ /16	76	1/4	⁹ / ₁₆	- 1 /o	2	5 ⁷ /8	3 ¹ /16	6 ¹⁵ /16
5	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8		1/4	¹¹ / ₁₆		2 ¹ / ₄	6 ¹ /8	3 ⁵ /16	7 ³ /16
5	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ /2	3.749	1	2 /16 2 ⁵ /8	2 ⁷ /8	5/8	/4	/10	1 ⁵ /8		6 ¹ /8	3 ⁵ /16	7 ³ /16
	1	⁷ /8-14	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ / ₁₆	78	1/4	7/16		1 ³ /8	5 ¹ /4	2 ⁷ /16	6 ⁵ /16
	1 ³ /8	⁷⁸ 14 1 ¹ /4-12	1-14	1 ⁵ /8	1.999	5/8	78 1 ¹ /8	1 ⁵ /16	_	1/4	1/2		1 ⁵ /8	5 ¹ /2	2 ¹¹ /16	6 ⁹ /16
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 /8 1 ¹ /2	1 ¹¹ /16		1/4	9/16		1 ⁷ /8	6 ¹ /8	3 ¹ /16	7 ⁵ /16
	4	3 ³ /4-12	3-12	4	4.749	1	3 ³ /8	3 ⁷ /8	1/2			1 ¹ / ₂		6 ¹ /2	3 ⁷ /16	7 ¹¹ /16
	2	1 ³ / ₄ -12	1 ¹ /2-12	2 ¹ /4	2.624	7/8	1 ¹¹ / ₁₆	1 ¹⁵ /16	12	1/4	⁹ / ₁₆		2	6 ¹ /4	3 ³ /16	7 ⁷ /16
6	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8		1/4	11/16		2 ¹ /4	6 ¹ /2	3 ⁷ /16	7 ¹¹ /16
5	3	2 ³ / ₄ -12	2 ¹ /4-12	3 ¹ /2	3.749	1	25/8	27/8	1/2			1 ¹ / ₂		6 ¹ /2	3 ⁷ /16	7 ¹¹ /16
	3 ¹ /2	3 ¹ /4-12	2 ¹ /2-12	3 ¹ /2	4.249	1	3	3 ³ /8	1/2		_	1 ¹ /2	_	6 ¹ /2	3 ⁷ /16	7 ¹¹ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	5/8	1 ¹ /8	1 ⁵ /16	,	1/4	7/16	+ • • -	1 ⁵ /8	5 ⁷ /8	2 ¹³ /16	7 ¹ /16

Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size

Intermediate Fixed Trunnion Mount

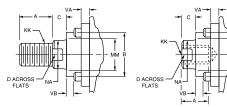

Style MT4 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods



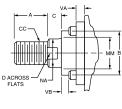

Dimension XI to be specified by customer.

Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have removable cartridges.

Intermediate Fixed Trunnion Mount Style MT4 1 1/2" - 6" Bore

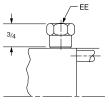


**Dimension XI to be specified by customer.


Rod End Dimensions — see table 2 **Thread Style 2 Thread Style 3** Short Female

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended

Thread Style 4 Intermediate Male


"Special" Thread Style 0 Special thread, extension,

rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

			EI	E					+.000 TD						Add S	Stroke
Bore	BD	Е	NPTF⊖	SAE*	F	G	J	к	001	TL	тм	UМ	UV	Min. Stroke	LG	Р
1 ¹ / ₂	1 ¹ / ₄	2	3/84	6#	³ /8	1 ¹ / ₂	1	1/4	1.000	1	2 ¹ / ₂	4 ¹ / ₂	2 ¹ / ₂	1/4	3 ⁵ /8	2 ¹ / ₄
2	1 ¹ / ₂	2 ¹ /2	³ /8 [†]	6	³ /8	1 ¹ / ₂	1	⁵ /16	1.000	1	3	5	3	¹ / ₂	3 ⁵ /8	2 ¹ / ₄
2 ¹ / ₂	1 ¹ / ₂	3	3/84	6	³ /8	1 ¹ / ₂	1	⁵ /16	1.000	1	3 ¹ / ₂	5 ¹ /2	3 ¹ / ₂	³ /8	33/4	2 ³ /8
3 ¹ / ₄	2	3 ³ / ₄	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1.000	1	4 ¹ / ₂	6 ¹ / ₂	4 ¹ / ₄	⁷ /8	4 ¹ / ₄	25/8
4	2	4 ¹ /2	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1.000	1	5 ¹ /4	7 ¹ /4	5	⁷ /8	4 ¹ / ₄	25/8
5	2	5 ¹ /2	1/2	10	⁵ /8	1 ³ /4	1 ¹ /4	⁷ /16	1.000	1	6 ¹ /4	8 ¹ / ₄	6	⁵ /8	4 ¹ / ₂	27/8
6	2 ¹ /2	6 ¹ /2	3/4	12	³ /4	2	1 ¹ / ₂	⁷ /16	1.375	1 ³ /8	7 ⁵ /8	10 ³ /8	7	1 ¹ /8	5	3 ¹ / ₈

^e NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

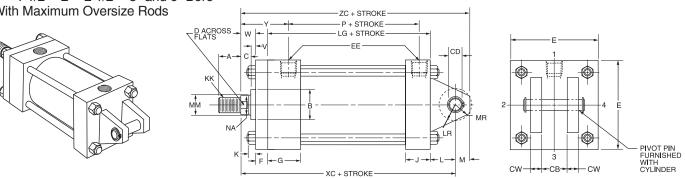
Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.
On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available.

Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size

		Thr	ead		Rod	End I	Dimens	sions a	nd En	velop	e Dime	ension	s Affe	cted by	Rod S	ize
Davis	Rod Dia.	Style	Style 2 & 3	•	+.000 002	•	_				VD			Min.++	Ň	Add Stroke
Bore	5/8	1/2-20	KK	A ³ /4	B 1.124	C	D	9/16	V	VA	VB ³ / ₁₆	W	WF	XI 3 ³ / ₁₆	Y 1 ¹⁵ /16	ZB 4 ⁷ /8
1 ¹ / ₂	1	7/8-14	³ /4 -16	1 ¹ /8	1.124	1/2	7/8	¹⁵ /16	1/2	/4	716	1		3 ⁹ /16	2 ⁵ /16	4 /8 5 ¹ /4
	5/8	¹ /2 -20	⁷ / ₁₆ -20	³ /4	1.124	3/8	1/2	⁹ /16		1/4	³ / ₁₆		1	3 ⁵ /16	1 ¹⁵ /16	4 ¹⁵ / ₁₆
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	5/8	74	710	1 ¹ / ₄	<u> </u>	3 ¹⁵ /16	2 ⁹ /16	5 ⁹ /16
	1	7/8-14	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16		1/4	7/16		1 ³ /8	3 ¹¹ /16	2 ⁵ /16	5 ⁵ /16
	1	7/8-14	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	_	1/4	7/16	_	1 ³ /8	3 ¹¹ /16	2 ⁵ /16	5 ⁷ /16
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆	3/4			1 ¹ / ₂	_	4 ³ / ₁₆	2 ¹³ /16	5 ¹⁵ /16
21/2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	5/8	1 ¹ /8	1 ⁵ /16	⁵ /8	_	_	1 ¹ / ₄	1 ⁵ /8	3 ¹⁵ / ₁₆	2 ⁹ /16	5 ¹¹ /16
	⁵ /8	¹ /2 -20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	—	1/4	³ / ₁₆	_	1	3 ⁵ /16	1 ¹⁵ / ₁₆	5 ¹ /16
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ /16	—	1/4	⁷ / ₁₆	—	1 ³ / ₈	4 ³ / ₁₆	2 ⁷ /16	6
01/	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	—	1/4	⁹ / ₁₆	—	2	4 ¹³ / ₁₆	3 ¹ / ₁₆	65/8
31/4	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	—	1/4	1/2	—	1 ⁵ /8	47/16	2 ¹¹ / ₁₆	6 ¹ / ₄
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ / ₁₆	—	1/4	⁹ / ₁₆	—	1 ⁷ /8	4 ¹¹ / ₁₆	2 ¹⁵ /16	6 ¹ /2
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	—	1/4	1/2	_	1 ⁵ /8	47/16	2 ¹¹ /16	6 ¹ / ₄
	2 ¹ / ₂	21/4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	—	1/4	¹¹ / ₁₆	—	2 ¹ / ₄	5 ¹ /16	3 ⁵ /16	6 ⁷ /8
4	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	—	1/4	⁹ / ₁₆	—	1 ⁷ /8	4 ¹¹ / ₁₆	2 ¹⁵ /16	6 ¹ /2
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ /16	1 ¹⁵ /16	—	1/4	⁹ / ₁₆	—	2	4 ¹³ / ₁₆	3 ¹ / ₁₆	6 ⁵ /8
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	¹ /2	⁷ /8	¹⁵ /16	_	1/4	⁷ / ₁₆		1 ³ /8	4 ³ / ₁₆	27/16	6
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	—	1/4	⁹ / ₁₆		1 ⁷ /8	4 ¹¹ / ₁₆	2 ¹⁵ /16	6 ¹³ /16
	3 ¹ / ₂	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	⁵ /8		—	1 ⁵ /8		5 ¹ /16	3 ⁵ /16	7 ³ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ /16	1 ¹⁵ /16	—	1/4	⁹ / ₁₆	_	2	413/16	3 ¹ /16	6 ¹⁵ /16
5	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8	_	1/4	¹¹ / ₁₆	_	2 ¹ / ₄	5 ¹ /16	3 ⁵ /16	7 ³ / ₁₆
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	27/8	⁵ /8	—	—	1 ⁵ /8		5 ¹ /16	3 ⁵ /16	7 ³ / ₁₆
	1	⁷ /8-14	³ /4 -16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16		1/4	⁷ / ₁₆		1 ³ /8	4 ³ / ₁₆	27/16	6 ⁵ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16		1/4	1/2		1 ⁵ /8	47/16	2 ¹¹ / ₁₆	6 ⁹ /16
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ /2	1 ¹¹ / ₁₆		1/4	⁹ / ₁₆	—	17/8	5 ³ /16	3 ¹ /16	7 ⁵ /16
	4	33/4-12	3-12	4	4.749	1	3 ³ /8	37/8	1/2	<u> </u>		1 ¹ / ₂	-	5 ⁹ /16	3 ⁷ /16	7 ¹¹ /16
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	7/8	1 ¹¹ /16	1 ¹⁵ /16		1/4	⁹ / ₁₆	<u> </u>	2	5 ⁵ /16	3 ³ /16	7 ⁷ /16
6	2 ¹ /2	2 ¹ / ₄ -12	17/8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8		1/4	11/16	-	2 ¹ / ₄	5 ⁹ /16	3 ⁷ /16	7 ¹¹ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ /2	3.749	1	25/8	2 ⁷ /8	1/2			1 ¹ / ₂	-	5 ⁹ /16	3 ⁷ /16	7 ¹¹ /16
	3 ¹ /2	3 ¹ /4-12	2 ¹ /2-12	3 ¹ /2	4.249	1	3	3 ³ /8	1/2			1 ¹ / ₂		5 ⁹ /16	3 ⁷ /16	7 ¹¹ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	⁷ / ₁₆	-	1 ⁵ /8	415/16	2 ¹³ /16	7 ¹ /16

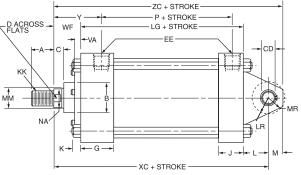
Dimension XI to be specified by customer.



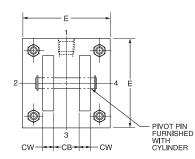
Before determining dimensions: See rod bearing cartridges chart on specifications/mountings page for cylinder rod combinations that have

Cap Fixed Clevis Mount

Style MP1 1" - 1 1/2" - 2" - 2 1/2" - 5" and 6" Bore With Maximum Oversize Rods


Tie Rod Retained Cartridge

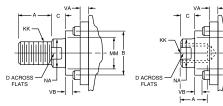
Note: The 1", 4", 5" and 6" bore sizes have tie rod nuts at both ends as shown. Tie rods thread into cap on all other bore sizes.


Cap Fixed Clevis Mount

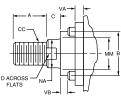
Style MP1 1 1/2" - 6" Bore

removable cartridges.

Removable Cartridge



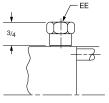
Note: The 1", 4", 5" and 6" bore sizes have tie rod nuts at both ends as shown. Tie rods thread into cap on all other bore sizes.


Rod End Dimensions — see table 2 Thread Style 2 Thread Style 3

Small Male

Thread Style 4 Intermediate Male

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod ends are recommended


"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Straight Thread Port Adapters

Used on 1 1/2" bore size only.

through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

		+.000 CD ⁴			E	E									Add S	Stroke
Bore	СВ	002	CW	Е		SAE*	F	G	J	к	L	LR	м	MR	LG	Р
1‡	•	.441•	٠		1/4	6	³ /8	1 ¹ / ₂	1	³ /16	1/2•	1/2•	⁷ / ₁₆ •	1/2•	3 ¹ /2•	2 ¹ /8
1 ¹ / ₂	3/4	.501	1/2	2	3/8†	6#	³ /8	1 ¹ / ₂	1	1/4	³ /4	³ /4	1/2	⁵ /8	35/8	2 ¹ /4
2	3/4	.501	1/2	2 ¹ /2	3/8†	6	³ /8	1 ¹ / ₂	1	⁵ /16	3/4	³ /4	1/2	⁵ /8	3 ⁵ /8	2 ¹ / ₄
2 ¹ / ₂	3/4	.501	1/2	3	3/8†	6	³ /8	1 ¹ / ₂	1	⁵ /16	3/4	³ /4	1/2	⁵ /8	3 ³ /4	2 ³ /8
3 ¹ / ₄	1 ¹ /4	.751	⁵ /8	3 ³ / ₄	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1 ¹ / ₄	1	³ /4	¹⁵ /16	4 ¹ / ₄	25/8
4	1 ¹ /4	.751	⁵ /8	4 ¹ /2	1/2	10	-	1 ³ /4	1 ¹ /4	³ /8	1 ¹ / ₄	1	³ /4	¹⁵ /16	4 ¹ / ₄	25/8
5	1 ¹ /4	.751	⁵ /8	5 ¹ /2	1/2	10	⁵ /8	1 ³ /4	1 ¹ /4	⁷ /16	1 ¹ / ₄	1	³ /4	¹⁵ /16	4 ¹ /2	27/8
6	1 ¹ /2	1.001	3/4	6 ¹ /2	3/4	12	3/4	2	1 ¹ / ₂	⁷ /16	1 ¹ / ₂	1 ¹ /4	1	1 ³ /16	5	3 ¹ /8

O NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

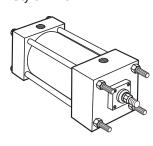
* SAE straight thread ports are indicated by port number.

■ 1" bore head is 1 3/4" x 1 1/2". See mounting style MF1 page.

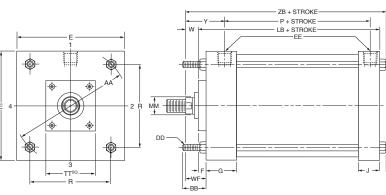
† On 1 1/2", 2" and 2 1/2" bore sizes the head end (only) pipe thread is not full depth on cylinders with maximum oversize rods. Minimum of 3 full threads available. # Straight thread ports on the cap end of 1 1/2" bore require an adapter fitting. An adapter fitting is also required on the head end of 1 1/2" bore with straight thread ports and 1" rod. Adapters are furnished as standard.

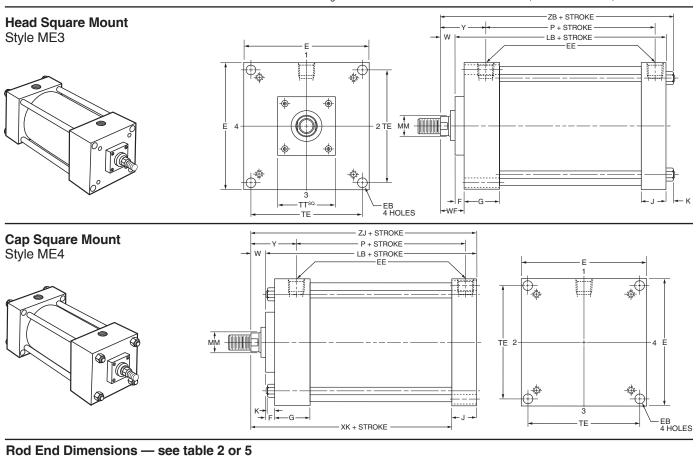
- ▲ Dimension CD is pin diameter except in 1" bore.
- In 1" bore size only, a single fixed eye mounting 7/16" thick is used. Dimension CD (.441") is hole diameter — pin not supplied.
- ‡ Cushion adjusting needle valve for 1" bore projects beyond sides of head and cap.

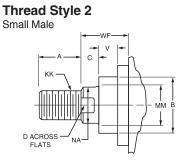
Table 2—Rod End Dimensions and Envelope Dimensions Affected by Rod Size

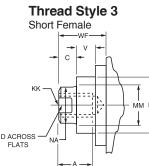

		Thr	ead		Rod En	d Dim	nensio	ns and	Enve	lope D	imens	ions A	ffected	d by Ro	od Size	•
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	А	+.000 002 B	с	D	NA	v	VA	VB	w	WF	Y	Add S	Stroke ZC
	1/2	7/16-20	⁵ /16-24	5/8	.999	3/8	3/8	7/16	1/4		-	5/8		1 ¹⁵ /16	5	5 ⁷ /16
1	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	⁹ /16	1/4	-	_	⁵ /8	_	1 ¹⁵ /16	5	5 ⁷ /16
	5/8	¹ /2 -20	⁷ /16-20	3/4	1.124	3/8	1/2	⁹ /16		1/4	³ /16		1	1 ¹⁵ /16	5 ³ /8	5 ⁷ /8
1 ¹ / ₂	1	7/8-14	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	1/2			1		2 ⁵ /16	5 ³ /4	6 ¹ /4
	5/8	1/2-20	7/16-20	3/4	1.124	3/8	1/2	⁹ /16		1/4	3/16		1	1 ¹⁵ /16	5 ³ /8	57/8
2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	5/8	1 ¹ /8	1 ⁵ /16	⁵ /8	_	_	1 ¹ / ₄	_	2 ⁹ /16	6	6 ¹ /2
	1	7/8-14	³ /4-16	1 ¹ /8	1.499	1/2	7/8	15/16		1/4	7/16		1 ³ /8	2 ⁵ /16	5 ³ /4	6 ¹ /4
	1	⁷ /8 -1 4	³ /4-16	1 ¹ /8	1.499	1/2	7/8	¹⁵ /16	_	1/4	7/ ₁₆	_	1 ³ /8	2 ⁵ /16	5 ⁷ /8	6 ³ /8
01/	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ /16	3/4	_	_	1 ¹ / ₂	_	2 ¹³ /16	6 ³ /8	6 ⁷ /8
21/2	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	⁵ /8	_	_	1 ¹ / ₄	1 ⁵ /8	2 ⁹ /16	6 ¹ /8	6 ⁵ /8
	⁵ /8	¹ /2 -20	⁷ /16 -20	3/4	1.124	³ /8	1/2	⁹ /16	_	1/4	³ /16	_	1	1 ¹⁵ / ₁₆	5 ¹ /2	6
	1	⁷ /8 -1 4	³ /4-16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ /16	_	1/4	⁷ / ₁₆	_	1 ³ /8	2 ⁷ /16	6 ⁷ /8	7 ⁵ /8
01/	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	_	1/4	⁹ /16	_	2	3 ¹ / ₁₆	7 ¹ / ₂	8 ¹ / ₄
31/4	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2	_	1 ⁵ /8	2 ¹¹ /16	7 ¹ /8	7 ⁷ /8
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ / ₁₆	_	1 ⁷ /8	2 ¹⁵ /16	7 ³ /8	8 ¹ / ₈
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2	_	1 ⁵ /8	211/16	7 ¹ /8	7 ⁷ /8
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	2 ³ /8	_	1/4	11/16	_	2 ¹ / ₄	3 ⁵ /16	7 ³ /4	8 ¹ / ₂
4	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ / ₁₆	_	1/4	⁹ / ₁₆	_	1 ⁷ /8	2 ¹⁵ /16	7 ³ /8	8 ¹ /8
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	_	1/4	⁹ / ₁₆	_	2	3 ¹ / ₁₆	7 ¹ / ₂	8 ¹ / ₄
	1	⁷ /8 -14	³ /4 -16	1 ¹ /8	1.499	¹ /2	⁷ /8	¹⁵ /16	_	1/4	⁷ / ₁₆	_	1 ³ /8	2 ⁷ /16	67/8	7 ⁵ /8
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	1 ¹¹ /16	—	1/4	⁹ /16	—	1 ⁷ /8	2 ¹⁵ /16	7 ⁵ /8	8 ³ / ₈
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	⁵ /8	_	—	1 ⁵ /8	_	3 ⁵ /16	8	8 ³ /4
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16	—	1/4	⁹ /16	—	2	3 ¹ / ₁₆	7 ³ /4	8 ¹ / ₂
5	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	2 ³ /8		1/4	¹¹ / ₁₆		2 ¹ / ₄	3 ⁵ / ₁₆	8	8 ³ / ₄
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	27/8	⁵ /8		_	1 ⁵ /8	_	3 ⁵ / ₁₆	8	8 ³ /4
	1	⁷ /8 -1 4	³ /4 -16	1 ¹ /8	1.499	¹ /2	7/8	¹⁵ /16	_	1/4	⁷ / ₁₆		1 ³ /8	27/16	7 ¹ /8	7 ⁷ /8
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16	_	1/4	1/2		1 ⁵ /8	2 ¹¹ /16	7 ³ /8	8 ¹ /8
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	1 ¹¹ / ₁₆	—	1/4	⁹ /16		1 ⁷ /8	3 ¹ / ₁₆	8 ³ / ₈	9 ³ / ₈
	4	33/4-12	3-12	4	4.749	1	3 ³ /8	37/8	1/2			1 ¹ / ₂		3 ⁷ /16	8 ³ /4	9 ³ / ₄
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	1 ¹⁵ /16		1/4	⁹ / ₁₆		2	3 ³ /16	8 ¹ / ₂	9 ¹ / ₂
6	2 ¹ /2	2 ¹ /4-12	17/8-12	3	3.124	1	2 ¹ /16	2 ³ /8	_	1/4	11/16		2 ¹ / ₄	3 ⁷ /16	8 ³ /4	9 ³ / ₄
	3	23/4-12	21/4-12	3 ¹ / ₂	3.749	1	25/8	27/8	1/2			1 ¹ / ₂		3 ⁷ /16	8 ³ /4	9 ³ / ₄
	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	3 ³ /8	1/2			1 ¹ / ₂	_	3 ⁷ /16	8 ³ / ₄	9 ³ / ₄
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	1 ⁵ /16		1/4	⁷ / ₁₆		1 ⁵ /8	213/16	8 ¹ / ₈	9 ¹ /8

Medium-Duty Hydraulic Cylinders **PL-2 Series**


Tie Rods Extended Mount




Rods Extended, illustrated: Model MX2 Cap Tie Rods Extended; and Model MX1. Both Ends Tie Rods Extended are also available. All Extended Tie Rods can be dimensioned from Model MX3 drawing at right.


Model MX3, Head Tie

Mounting Model MX3 and MX1 not offered in 8" bore size, rod diameter 4 1/2", 5" and 5 1/2".

MM E

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod

ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

NA

D ACROSS

FLATS

Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

Table 1—Envelope and Mounting Dimensions—Style MX3

					E	E						Add S	Stroke
Bore	AA	BB	DD	Е	NPTF [⊖]	SAE*	F	G	J	К	R	LB	Р
8	9.1	2 ⁵ / ₁₆	⁵ /8-18	8 ¹ / ₂	3/4	12	3/4	2	1 ¹ / ₂	⁹ / ₁₆	6.44	5 ⁷ /8	3 ¹ / ₄
					0.4 5 1								

^e NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

Table 2—Rod End Dimensions—Style MX3

Table 3 — Envelope and **Mounting Dimensions**

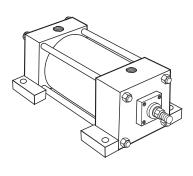
Table 6 — Envelope and

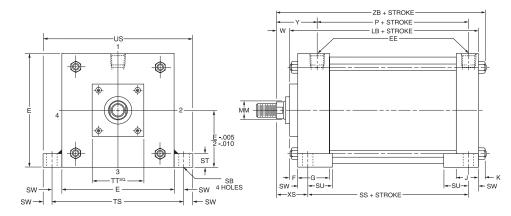
		Thre	ead		Rod Ex	tensi	ons an	d Pilo	t Dimer	sions	5				Add Stroke
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	А	+.000 002 B	с	D	LA	NA	v	w	тт	WF	Y	ZB
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ /4	2.624	7/8	1 ¹¹ / ₁₆	3 ¹ / ₂	1 ¹⁵ /16	³ /8	1 ¹ /4	4	2	3 ³ / ₁₆	7 ¹¹ /16
	5 ¹ /2	5 ¹ /4-12	4-12	5 ¹ /2	6.249	1	45/8	7	5 ³ /8	¹ /2	1 ¹ /2	7	2 ¹ /4	3 ⁷ /16	7 ¹⁵ /16
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	4 ¹ / ₂	2 ³ /8	¹ /2	1 ¹ /2	4	2 ¹ /4	3 ⁷ /16	7 ¹⁵ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	5	27/8	1/2	1 ¹ / ₂	5 ¹ /2	2 ¹ /4	3 ⁷ /16	7 ¹⁵ /16
8	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	5	3 ³ /8	1/2	1 ¹ / ₂	5 ¹ /2	2 ¹ /4	3 ⁷ /16	7 ¹⁵ /16
	4	3 ³ /4-12	3-12	4	4.749	1	3 ³ /8	5 ¹ /2	3 ⁷ /8	¹ /2	1 ¹ / ₂	5 ¹ /2	2 ¹ /4	3 ⁷ /16	7 ¹⁵ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	2 ¹ /2	1 ⁵ /16	1/4	⁷ /8	4	1 ⁵ /8	2 ¹³ /16	7 ⁵ /16
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	3/4	1 ¹ / ₂	3 ¹ /8	1 ¹¹ /16	³ /8	1 ¹ /8	4	1 ⁷ /8	3 ¹ /16	7 ⁹ /16
	4 ¹ / ₂	4 ¹ /4-12	3 ¹ /4-12	4 ¹ /2	5.249	1	3 ⁷ /8	6	4 ³ /8	¹ /2	1 ¹ /2	7	2 ¹ /4	3 ⁷ /16	7 ¹⁵ /16
	5	4 ³ /4-12	31/2-12	5	5.749	1	4 ¹ / ₄	6 ¹ /2	47/8	¹ /2	1 ¹ /2	7	2 ¹ /4	3 ⁷ /16	7 ¹⁵ /16

Table 4—Envelope and Mounting Dimensions—Styles ME3 and ME4

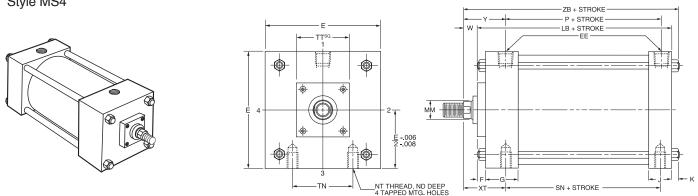
			E	E						Add S	Stroke
Bore	Е	EB	NPTF [⊖]	SAE*	F	G	J	ĸ	TE	LB	Р
8	8 ¹ / ₂	¹¹ / ₁₆	3/4	12	3/4	2	1 ¹ / ₂	⁹ / ₁₆	7.57	5 ⁷ /8	3 ¹ / ₄

^e NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

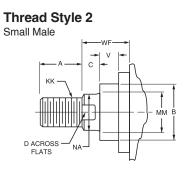

* SAE straight thread ports are indicated by port number.

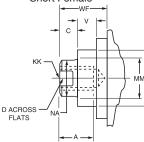

Table 5—Rod End Dimensions—Styles ME3 and ME4

Mounting Dimensions Add Stroke Thread **Rod Extensions and Pilot Dimensions** +.000 Rod Style Style 4 CC Dia. 2 & 3 -.002 С WF Bore D W Υ XK ZΒ ZJ MM KK Α В LA NA ۷ TΤ **1**¹⁵/16 5⁵/8 **7**¹¹/₁₆ 1³/4-12 1¹/2-12 $2^{1}/_{4}$ 2.624 ⁷/8 **1**¹¹/₁₆ **3**¹/₂ ³/8 **1**¹/₄ 4 2 **3**³/16 7¹/8 2 **1**¹/₂ 7 715/16 5¹/2 5¹/4-12 4-12 5¹/2 6.249 1 45/8 7 5³/8 1/2 $2^{1}/_{4}$ 37/16 5⁷/8 73/8 715/16 $2^{1/2}$ 2¹/4-12 17/8-12 3 3.124 1 2¹/16 **4**¹/₂ 2³/8 1/2 **1**¹/₂ 4 **2**¹/₄ 37/16 5⁷/8 **7**³/8 3 2³/4-12 2¹/4-12 **3**¹/₂ 3.749 25/8 5 27/8 ¹/2 $1^{1}/_{2}$ 5¹/2 2¹/4 37/16 5⁷/8 715/16 **7**³/8 1 3 5 **3**³/8 1/2 **1**¹/₂ **7**¹⁵/16 7³/8 3¹/2 3¹/4-12 2¹/2-12 **3**¹/₂ 4.249 1 5¹/2 2¹/4 37/16 5⁷/8 8 **3**³/8 715/16 4 33/4-12 3-12 4 4.749 1 5¹/2 37/8 1/2 **1**¹/₂ 2¹/₄ 5⁷/8 **7**³/8 5¹/2 37/16 1⁵/8 1³/8 1-14 **1**⁵/8 ⁵/8 **1**⁵/16 1/4 7/8 2¹³/16 5¹/4 **7**⁵/16 1¹/4-12 1.999 **1**¹/8 **2**¹/₂ **6**³/₄ 4 **1**³/₄ ³/4 7 1¹/2-12 1¹/4-12 2 2.374 **3**¹/8 **1**¹¹/₁₆ ³/8 **1**¹/8 4 **1**⁷/8 **3**¹/₁₆ 5¹/2 **7**⁹/₁₆ **1**¹/2 **4**¹/₂ 4¹/4-12 31/4-12 **4**¹/₂ 5.249 1 37/8 6 43/8 1/2 **1**¹/₂ 7 2¹/₄ 37/16 57/8 7¹⁵/16 **7**³/8 5 4³/₄-12 31/2-12 5 5.749 $4^{1}/_{4}$ **6**¹/₂ 47/8 $1^{1}/_{2}$ 7 **2**¹/₄ 57/8 **7**¹⁵/₁₆ **7**³/8 1 1/2 37/16


Side Lug Mount

Style MS2




Side Tap Mount Style MS4

Rod End Dimensions — see table 2 or 5

Thread Style 3 Short Female

Thread Style 4 Intermediate Male

D ACROSS NA

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod

ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

Table 1—Envelope and Mounting Dimensions—Style MS2

		E	E											Ac	ld Strok	æ
Bore	E		SAE*	F	G	J	К	SB•	ST	SU	SW	TS	US	LB	Р	SS
8	8 ¹ / ₂	3/4	12	3/4	2	1 ¹ / ₂	⁹ / ₁₆	¹³ /16	1	1 ⁹ / ₁₆	¹¹ / ₁₆	9 ⁷ / ₈	11 ¹ / ₄	5 ⁷ /8	3 ¹ / ₄	33/4
	orto will be	furnichor	d a a atand			iabt thro	od porto d	ro opocifi								

^o NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.

Upper surface spot-faced for socket-head screws.

Table 2—Rod End Dimensions—Style MS2

Table 3 — Envelope and Mounting Dimensions

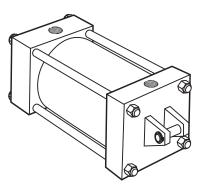
Table 6 — Envelope and

Mounting Dimensions

		Thr	ead		Rod Ex	tensio	ons and	d Pilot	Dimen	sions					Add Stroke
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	А	+.000 002 B	с	D	LA	NA	v	w	тт	xs	Y	ZB
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	3 ¹ / ₂	1 ¹⁵ /16	³ /8	1 ¹ /4	4	211/16	3 ³ /16	7 ¹¹ /16
	5 ¹ /2	5 ¹ /4-12	4-12	5 ¹ /2	6.249	1	4 ⁵ /8	7	5 ³ /8	¹ /2	1 ¹ / ₂	7	215/16	37/16	7 ¹⁵ /16
	2 ¹ / ₂	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	4 ¹ /2	2 ³ /8	¹ /2	1 ¹ / ₂	4	215/16	37/16	7 ¹⁵ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	5	27/8	¹ /2	1 ¹ / ₂	5 ¹ /2	215/16	3 ⁷ /16	7 ¹⁵ /16
0	3 ¹ / ₂	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	5	33/8	¹ /2	1 ¹ / ₂	5 ¹ /2	2 ¹⁵ /16	3 ⁷ /16	7 ¹⁵ /16
8	4	33/4-12	3-12	4	4.749	1	3 ³ / ₈	5 ¹ /2	37/8	¹ /2	1 ¹ / ₂	5 ¹ /2	215/16	3 ⁷ /16	7 ¹⁵ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	2 ¹ /2	1 ⁵ /16	1/4	⁷ /8	4	2 ⁵ /16	2 ¹³ /16	7 ⁵ /16
	1 ³ /4	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	3 ¹ /8	1 ¹¹ / ₁₆	³ /8	1 ¹ /8	4	2 ⁹ /16	3 ¹ / ₁₆	7 ⁹ /16
	4 ¹ / ₂	4 ¹ /4-12	31/4-12	4 ¹ /2	5.249	1	37/8	6	4 ³ / ₈	¹ /2	1 ¹ / ₂	7	215/16	3 ⁷ /16	7 ¹⁵ /16
	5	43/4-12	31/2-12	5	5.749	1	4 ¹ / ₄	6 ¹ /2	47/8	¹ /2	1 ¹ / ₂	7	215/16	3 ⁷ /16	7 ¹⁵ /16

Table 4—Envelope and Mounting Dimensions—Style MS4

		E	E								A	dd Stro	ke
Bore	E	NPTF [⊖]	SAE*	F	G	J	к	ND	NT	TN	LB	Р	SN
8	8 ¹ / ₂	3/4	12	3/4	2	1 ¹ / ₂	⁹ / ₁₆	1 ¹ /8	³ /4-10	4 ¹ / ₂	5 ⁷ /8	3 ¹ / ₄	3 ¹ / ₄


 $^{\Theta}$ NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

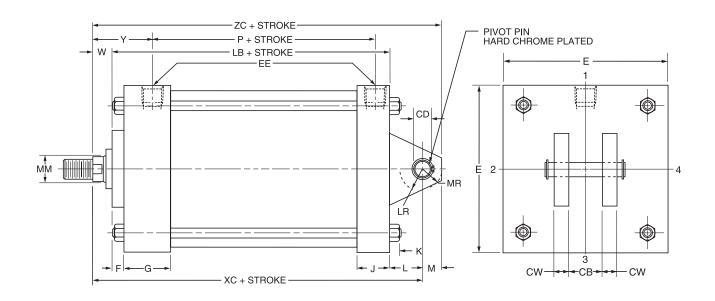
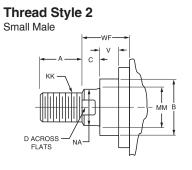
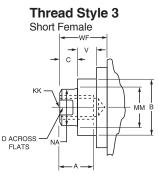

* SAE straight thread ports are indicated by port number.

Table 5—Rod End Dimensions—Style MS4


Rod Extensions and Pilot Dimensions Add Stroke Thread +.000 Style 4 Rod Style 2 & 3 Dia -.002 B ĊĊ Bore MM KK Α С D LA NA v w TΤ ΧТ Y ZΒ **1**¹¹/₁₆ **1**¹⁵/₁₆ **3**³/16 3³/16 **7**¹¹/₁₆ 2 1³/4-12 1¹/2-12 **2**¹/₄ 2.624 ⁷/8 **3**¹/₂ ³/8 **1**¹/₄ 4 5¹/2 5¹/4-12 4-12 6.249 1 4⁵/8 7 5³/8 1/2 1¹/2 7 3⁷/16 3⁷/16 7¹⁵/16 5¹/2 2¹/2 **1**¹/₂ 3 3.124 2¹/16 2³/8 4 **7**¹⁵/16 2¹/4-12 17/8-12 4¹/2 1/2 3⁷/16 37/16 1 2³/4-12 3.749 25/8 5 **1**¹/₂ 5¹/2 715/16 3 2¹/4-12 **3**¹/₂ 1 27/8 $^{1}/_{2}$ 37/16 37/16 8 715/16 **3**¹/₂ 3¹/₄-12 2¹/₂-12 **3**¹/₂ 4.249 1 3 5 **3**³/8 $^{1}/_{2}$ $1^{1}/_{2}$ 5¹/2 37/16 37/16 4 33/4-12 3-12 4 4.749 1 33/8 5¹/2 37/8 1/2 $1^{1/2}$ 5¹/2 37/16 37/16 715/16 1³/8 1¹/4-12 ⁵/8 7/8 213/16 213/16 **7**⁵/16 1-14 **1**⁵/8 1.999 **1**¹/8 2¹/₂ **1**⁵/16 1/4 4 1³/4 1¹/2-12 1¹/4-12 2 2.374 3/4 **1**¹/₂ **3**¹/8 **1**¹¹/₁₆ 3/8 **1**¹/8 4 **3**¹/₁₆ **3**¹/₁₆ **7**⁹/16 4¹/₂ 4¹/4-12 31/4-12 **4**¹/₂ 5.249 1 37/8 6 4³/8 1/2 **1**¹/₂ 7 37/16 37/16 7¹⁵/16 5 4³/₄-12 3¹/₂-12 5 5.749 1 **4**¹/₄ 47/8 ¹/2 7 **3**⁷/16 37/16 **7**¹⁵/₁₆ **6**¹/₂ **1**¹/₂


Cap Fixed Clevis Mount Style MP1

Rod End Dimensions — see table 2

мм

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod

ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

ΝΔ

D ACROSS

FLATS

Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

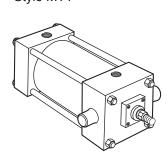
Medium-Duty Hydraulic Cylinders **PL-2 Series**

Table 1—Envelope and Mounting Dimensions—Style MP1

		+.000 002			E	E									Add S	troke
Bore	СВ	CD•	CW	E	NPTF [⊖]	SAE*	F	G	J	К	L	LR	М	MR	LB	Р
8	1 ¹ / ₂	1.001	3/4	8 ¹ / ₂	3/4	12	3/4	2	1 ¹ / ₂	⁹ /16	1 ¹ / ₂	1 ¹ / ₄	1	1 ³ / ₁₆	5 ⁷ /8	3 ¹ / ₄

 $^{\Theta}$ NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.


• Dimension CD is pin diameter.

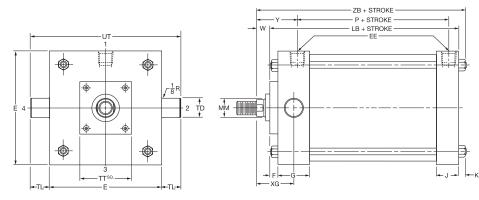
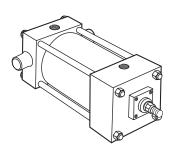
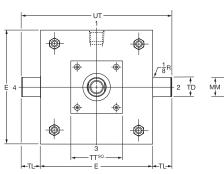
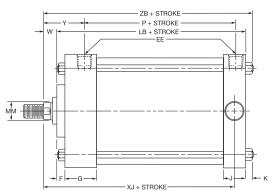

Table 2—Rod End Dimensions—Style MP1

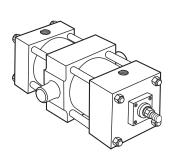
Table 3 — Envelope and Mounting Dimensions

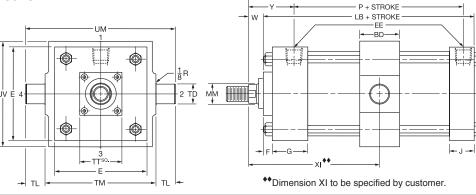

		Thr	ead		Rod Ex	tensio	ons and	d Pilot	Dimen	sions			Add S	Stroke
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	А	+.000 002 B	с	D	LA	NA	v	w	Y	хс	zc
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	3 ¹ /2	1 ¹⁵ / ₁₆	³ /8	1 ¹ / ₄	3 ³ /16	85/8	9 ⁵ / ₈
	5 ¹ /2	5 ¹ /4-12	4-12	5 ¹ /2	6.249	1	4 ⁵ /8	7	5 ³ /8	¹ /2	1 ¹ /2	3 ⁷ /16	87/8	9 ⁷ /8
	2 ¹ /2	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ / ₁₆	4 ¹ /2	2 ³ /8	¹ /2	1 ¹ /2	3 ⁷ /16	87/8	9 ⁷ / ₈
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	2 ⁵ /8	5	27/8	¹ /2	1 ¹ / ₂	3 ⁷ /16	87/8	9 ⁷ / ₈
0	3 ¹ / ₂	31/4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	5	3 ³ /8	¹ /2	1 ¹ / ₂	3 ⁷ /16	87/8	9 ⁷ / ₈
8	4	33/4-12	3-12	4	4.749	1	3 ³ /8	5 ¹ /2	37/8	¹ /2	1 ¹ / ₂	3 ⁷ /16	87/8	97/8
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	2 ¹ /2	1 ⁵ /16	¹ /4	⁷ /8	2 ¹³ /16	8 ¹ / ₄	9 ¹ / ₄
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	3 ¹ /8	1 ¹¹ / ₁₆	³ /8	1 ¹ /8	3 ¹ /16	8 ¹ / ₂	9 ¹ / ₂
	4 ¹ / ₂	4 ¹ / ₄ -12	31/4-12	4 ¹ /2	5.249	1	37/8	6	4 ³ /8	¹ /2	1 ¹ / ₂	3 ⁷ /16	87/8	9 ⁷ / ₈
	5	43/4-12	3 ¹ /2-12	5	5.749	1	4 ¹ / ₄	6 ¹ /2	47/8	¹ /2	1 ¹ /2	3 ⁷ /16	8 ⁷ /8	9 ⁷ /8

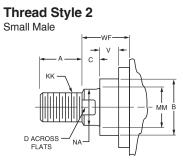

Head Trunnion Mount Style MT1



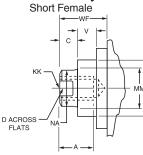
Cap Trunnion Mount Style MT2

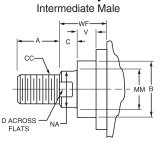





ZB + STROKE

Intermediate Fixed Trunnion Mount Style MT4




Rod End Dimensions — see table 2 or 5

or 5 Thread Style 3

Thread Style 4

"Special" Thread Style 0

Special thread, extension, rod eye, blank, etc., are also available.

To order, specify "Style 0" and give desired dimensions for KK, A, W or WF. If otherwise special, furnish dimensioned sketch.

A high strength rod end stud is supplied on thread style 2 through 2" diameter rods. Larger sizes or special rod ends are cut threads. Style 2 rod ends are recommended where the workpiece is secured against the rod shoulder. When the workpiece is not shouldered, style 2 rod

ends are recommended through 2" piston rod diameters and style 4 rod ends are recommended on larger diameters. Use style 3 for applications where female rod end threads are required. If rod end is not specified, style 2 will be supplied.

Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

Table 1—Envelope and Mounting Dimensions—Styles MT1 and MT2

		EE		+.000			Add S	troke				
Bore	Е	NPTF [⊖]	SAE∗	F	G	J	к	TD	TL	UT	LB	Р
8	8 ¹ / ₂	3/4	12	3/4	2	1 ¹ / ₂	⁹ / ₁₆	1.375	1 ³ /8	11 ¹ / ₄	5 ⁷ /8	3 ¹ / ₄
^o NPTE ports will be furnished as standard unless SAE straight thread ports are specified												

* SAE straight thread ports are indicated by port number.

Table 2—Rod End Dimensions—Styles MT1 and MT2

Table 3—Envelope and **Mounting Dimensions**

Table 6—Envelope and

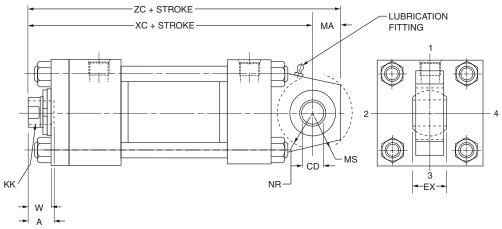
	Thread					tensio	ns and	d Pilot	Dimen	isions	;				Add	Stroke
Bore	Rod Dia. MM	Style 4 CC	Style 2 & 3 KK	А	+.000 002 B	с	D	LA	NA	v	w	тт	XG	Y	XJ	ZB
	2	1 ³ /4-12	1 ¹ /2-12	2 ¹ / ₄	2.624	⁷ /8	1 ¹¹ / ₁₆	3 ¹ / ₂	1 ¹⁵ / ₁₆	³ /8	1 ¹ / ₄	4	3	3 ³ / ₁₆	6 ³ /8	711/16
	5 ¹ /2	5 ¹ /4-12	4-12	5 ¹ /2	6.249	1	4 ⁵ /8	7	5 ³ /8	¹ /2	1 ¹ / ₂	7	3 ¹ / ₄	3 ⁷ /16	6 ⁵ /8	7 ¹⁵ /16
	2 ¹ / ₂	2 ¹ /4-12	1 ⁷ /8-12	3	3.124	1	2 ¹ /16	4 ¹ / ₂	2 ³ /8	¹ /2	1 ¹ / ₂	4	3 ¹ / ₄	3 ⁷ /16	6 ⁵ /8	7 ¹⁵ /16
	3	2 ³ /4-12	2 ¹ /4-12	3 ¹ / ₂	3.749	1	25/8	5	27/8	¹ /2	1 ¹ / ₂	5 ¹ /2	3 ¹ / ₄	37/16	6 ⁵ /8	715/16
8	3 ¹ / ₂	3 ¹ /4-12	2 ¹ /2-12	3 ¹ / ₂	4.249	1	3	5	3 ³ /8	¹ /2	1 ¹ /2	5 ¹ /2	3 ¹ / ₄	37/16	6 ⁵ /8	7 ¹⁵ /16
	4	3 ³ /4-12	3-12	4	4.749	1	3 ³ /8	5 ¹ /2	37/8	¹ /2	1 ¹ / ₂	5 ¹ /2	3 ¹ / ₄	37/16	6 ⁵ /8	7 ¹⁵ /16
	1 ³ /8	1 ¹ /4-12	1-14	1 ⁵ /8	1.999	⁵ /8	1 ¹ /8	2 ¹ /2	1 ⁵ /16	¹ /4	⁷ /8	4	2 ⁵ /8	2 ¹³ /16	6	7 ⁵ /16
	1 ³ / ₄	1 ¹ /2-12	1 ¹ /4-12	2	2.374	³ /4	1 ¹ / ₂	3 ¹ /8	1 ¹¹ / ₁₆	³ /8	1 ¹ /8	4	27/8	3 ¹ / ₁₆	6 ¹ /4	7 ⁹ /16
	4 ¹ / ₂	4 ¹ / ₄ -12	31/4-12	4 ¹ / ₂	5.249	1	37/8	6	4 ³ /8	¹ /2	1 ¹ / ₂	7	3 ¹ / ₄	3 ⁷ / ₁₆	6 ⁵ /8	7 ¹⁵ /16
	5	4 ³ / ₄ -12	31/2-12	5	5.749	1	4 ¹ / ₄	6 ¹ /2	4 ⁷ /8	¹ /2	1 ¹ /2	7	3 ¹ / ₄	3 ⁷ / ₁₆	6 ⁵ /8	715/16

Table 4—Envelope and Mounting Dimensions—Style MT4

			E	EE				+.000 001						Add Stroke		Style DD
Bore	BD	E	NPTF [⊕]	SAE*	F	G	J	к	TD	TL	ТМ	UM	UV	LB	Р	Min. Stroke
-	2 ¹ /2	8 ¹ / ₂	3/4	10	3/.	•	1 ¹ / ₂	⁹ /16	1.375	1 ³ /8	9 ³ / ₄	12 ¹ /2	9 ¹ / ₂	5 ⁷ /8	3 ¹ / ₄	7/8

^e NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* SAE straight thread ports are indicated by port number.


Table 5—Rod End Dimensions—Style MT4

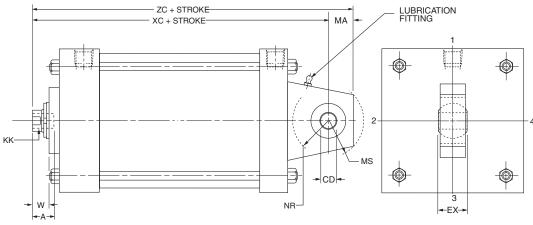
Mounting Dimensions Thread **Rod Extensions and Pilot Dimensions** Add Stroke Style 2 & 3 Style 4 Rod +.000 Min.** Dia. -.002 Bore MM cc KK В С D LA NA ۷ W TT XI Υ ZΒ Α 2 1³/₄-12 1¹/2-12 2¹/₄ 2.624 ⁷/8 **1**¹¹/₁₆ **3**¹/₂ **1**¹⁵/₁₆ ³/8 **1**¹/₄ 4 5⁵/16 **3**³/16 711/16 5¹/2 5¹/4-12 4-12 6.249 45/8 7 5³/8 **1**¹/₂ 7 5⁹/16 37/16 715/16 5¹/2 1 $^{1}/_{2}$ 2¹/2 2³/8 **1**¹/₂ 715/16 21/4-12 17/8-12 3 3.124 1 2¹/16 $4^{1}/_{2}$ $^{1}/_{2}$ 4 5⁹/16 **3**⁷/16 715/16 27/8 **1**¹/₂ 5⁹/16 2³/₄-12 2¹/₄-12 25/8 5 1/2 3 **3**¹/₂ 3.749 1 5¹/2 37/16 715/16 **1**¹/₂ 31/4-12 21/4-12 5⁹/16 **3**¹/₂ **3**¹/₂ 4.249 1 3 5 **3**³/8 ¹/2 5¹/2 37/16 8 715/16 3-12 4.749 1 $1^{1}/_{2}$ 5¹/2 5⁹/16 37/16 4 3³/4-12 4 3³/8 5¹/2 37/8 $^{1}/_{2}$ 1³/8 1¹/4-12 1-14 **1**⁵/8 1.999 ⁵/8 **1**¹/8 2¹/2 **1**⁵/16 1/4 ⁷/8 4 4¹⁵/16 213/16 75/16 **1**³/4 1¹/4-12 2 2.374 ³/4 **1**¹¹/₁₆ 4 5³/16 **3**¹/₁₆ **7**⁹/₁₆ 1¹/2-12 **1**¹/₂ **3**¹/8 ³/8 **1**¹/8 6 7 715/16 4¹/2 4¹/4-12 31/4-12 $4^{1}/_{2}$ 5.249 1 37/8 4³/8 ¹/2 $1^{1}/_{2}$ 5⁹/16 37/16 715/16 5 **4**¹/₄ **6**¹/₂ 47/8 **1**¹/₂ 7 5⁹/16 37/16 5 4³/₄-12 3¹/₂-12 5.749 1 $^{1}/_{2}$

Dimension XI to be specified by customer.

Spherical Bearing Mounting – Style MPU3

Table 1—Dimensions

		Thr	ead								Add S	Stroke	
Bore	Rod Dia. MM	Style 3 KK ³	Style 7 KK ³	Α	CD ²	EX	МА	MS	NR	w	хс	zc	Max. Oper. PSI ¹
1 ¹ / ₂	⁵ /8	7/16-20	-	3/4	0005	7/16	3/4	¹⁵ / ₁₆	⁵ /8	⁵ /8	5 ³ /8	6 ¹ /8	1500
1.72	1	-	⁷ /16-20	3/4	.5000	16	0/4	10/16	3/8	1	5 ³ /4	6 ¹ /2	1500
	⁵ /8	⁷ /16-20	_	3/4	0005					⁵ /8	5 ³ /8	6 ¹ /8	
2	1 ³ /8	-	⁷ /16-20	3/4	0005	⁷ /16	3/4	¹⁵ /16	⁵ /8	1 ¹ / ₄	6	6 ³ / ₄	980
	1	-	⁷ /16 -20	3/4	.5000					1	5 ³ /4	6 ¹ /2]
	⁵ /8	⁷ /16 -20	-	3/4						⁵ /8	5 ¹ /2	6 ¹ /4	
2 ¹ / ₂	1 ³ /4	-	⁷ /16 -20	3/4	0005	7/16	3/4	¹⁵ /16	⁵ /8	1 ¹ / ₂	6 ³ /8	7 ¹ /8	620
∠72	1	-	⁷ /16-20	3/4	.5000	'/16	0/4	10/16	3/8	1	5 ⁷ /8	65/8	630
	1 ³ /8	-	⁷ /16 -20	3/4						1 ¹ / ₄	6 ¹ /8	6 ⁷ /8	
	1	³ /4 -16	-	1 ¹ /8	0005	²¹ / ₃₂				3/4	67/8	7 ⁷ /8	
3 ¹ / ₄	2	-	³ /4 -16	1 ¹ /8			1	1 ³ /8	1	1 ³ /8	7 ¹ / ₂	8 ¹ / ₂	830
5 /4	1 ³ /8	-	³ /4 -16	1 ¹ /8	.7500			1 7/8	I	1	7 ¹ /8	8 ¹ /8	
	1 ³ /4	-	³ /4 -16	1 ¹ /8						1 ¹ /4	7 ³ /8	8 ³ / ₈	
	1	³ /4 -16	-	1 ¹ /8	0005 .7500	²¹ /32				3/4	6 ⁷ /8	7 ⁷ /8	550
	2 ¹ / ₂	-	³ /4 -16	1 ¹ /8					1	1 ⁵ /8	7 ³ / ₄	8 ³ / ₄	
4	1 ³ /8	-	³ /4 -16	1 ¹ /8			1	1 ³ /8		1	7 ¹ /8	8 ¹ / ₈	
	1 ³ /4	-	³ /4 -16	1 ¹ /8						1 ¹ /4	7 ³ /8	8 ³ /8	
	2	-	³ /4 -16	1 ¹ /8						1 ³ /8	7 ¹ / ₂	8 ¹ /2	
	1	³ /4 -16	-	1 ¹ /8						3/4	7 ¹ /8	8 ¹ / ₈	350
	3 ¹ / ₂	-	³ /4 -16	1 ¹ /8						1 ⁵ /8	8	9	
	1 ³ /8	-	³ /4 -16	1 ¹ /8	0005					1	7 ³ /8	8 ³ / ₈	
5	1 ³ /4	-	³ /4 -16	1 ¹ /8	.7500	²¹ /32	1	1 ³ /8	1	1 ¹ / ₄	7 ⁵ /8	85/8	
	2	-	³ /4 -16	1 ¹ /8	.7500					1 ³ /8	7 ³ / ₄	8 ³ / ₄	
	2 ¹ /2	-	³ /4 -16	1 ¹ /8						1 ⁵ /8	8	9	
	3	-	³ /4 -16	1 ¹ /8						1 ⁵ /8	8	9	
	1 ³ /8	1-14	-	1 ⁵ /8						7/8	8 ¹ /8	9 ³ / ₈	
	4	-	1-14	1 ⁵ /8						1 ¹ / ₂	8 ³ / ₄	10	
	1 ³ /4	-	1-14	1 ⁵ /8	0005					1 ¹ /8	8 ³ / ₈	9 ⁵ /8	
6	2	-	1-14	1 ⁵ /8		⁷ /8	1 ¹ / ₄	1 ¹¹ / ₁₆	1 ¹ /4	1 ¹ /4	8 ¹ / ₂	9 ³ / ₄	440
	2 ¹ / ₂	_	1-14	1 ⁵ /8	1.0000			1 /10		1 ¹ / ₂	8 ³ / ₄	10	_
	3	-	1-14	1 ⁵ /8						1 ¹ /2	8 ³ / ₄	10	
	3 ¹ / ₂	_	1-14	1 ⁵ /8						1 ¹ / ₂	8 ³ / ₄	10	7

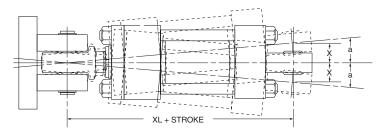

¹ Maximum operating pressure at 4:1 design factor is based on tensile strength of material. Pressure ratings are based on standard commercial bearing ratings.

² Dimension CD is hole diameter.

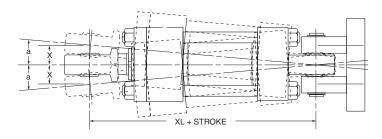
³ Threads listed are also for a spherical rod eye which match style 9 or style 7. The spherical rod eye pin diameter matches the cap pin and (if required) needs to be purchased separately; see PL-2 mounting accessories for detailed information.

Spherical Bearing Mounting – Style MPU3

Table 1—Dimensions


		Thr	ead								Add S	Stroke	
Bore	Rod Dia. MM	Style 3 KK ³	Style 7 KK ³	Α	CD ²	EX	МА	MS	NR	w	хс	ZC	Max. Oper. PSI ¹
	1 ³ /8	1-14	-	1 ⁵ /8			1 ¹ /4			7/8	8 ¹ / ₄	9 ¹ /2	
	5 ¹ /2	-	1-14	1 ⁵ /8	-	7/8				1 ¹ /2	87/8	10 ¹ /8	1
	1 ³ / ₄	-	1-14	1 ⁵ /8				1 ¹¹ /16		1 ¹ /8	8 ¹ / ₂	9 ³ / ₄	250
	2	-	1-14	1 ⁵ /8						1 ¹ /4	8 ⁵ /8	9 ⁷ /8	
8	2 ¹ /2	-	1-14	1 ⁵ /8	0005				411	1 ¹ /2	87/8	10 ¹ /8	1
0	3	-	1-14	1 ⁵ /8	1.0000				1 ¹ /4	1 ¹ /2	87/8	10 ¹ /8	-
	3 ¹ / ₂	-	1-14	1 ⁵ /8	1					1 ¹ /2	8 ⁷ /8	10 ¹ /8	
	4	-	1-14	1 ⁵ /8						1 ¹ /2	87/8	10 ¹ /8	
	4 ¹ / ₂	-	1-14	1 ⁵ /8	1					1 ¹ /2	87/8	10 ¹ /8	1
	5	-	1-14	1 ⁵ /8						1 ¹ /2	8 ⁷ /8	10 ¹ /8	

¹ Maximum operating pressure at 4:1 design factor is based on tensile strength of material. Pressure ratings are based on standard commercial bearing ratings.


² Dimension CD is hole diameter.

³ Threads listed are also for a spherical rod eye which match style 9 or style 7. The spherical rod eye pin diameter matches the cap pin and (if required) needs to be purchased separately; see PL-2 mounting accessories for detailed information.

Mounting Information Head End Mounting

Cap End Mounting

Recommended maximum swivel angle on each side of the cylinder centerline.

	Head End	I Mounted	Cap End	Mounted
Bore	Angle a	Tan. of a	Angle a	Tan. of a
1 ¹ / ₂	21/2	.035	21/2	.035
2	21/2	.044	4 ¹ / ₂	.079
2 ¹ / ₂	2 ¹ / ₂	.044	4 ¹ / ₂	.079
3 ¹ / ₄	31/2	.052	31/2	.052
4	2 ¹ / ₂	.044	3 ¹ / ₂	.052
5	31/2	.052	31/2	.052
6	31/2	.052	31/2	.052

Note: Dimension X is the maximum off center mounting of the cylinder. To determine dimension X for various stroke lengths multiply the distance between pivot pin holes by tangent of angle a. For extended position use X = XL + 2X stroke.

Schrader Bellows offers a complete range of Cylinder Accessories to assure you of the greatest versatility in present or future cylinder applications. Accessories offered

for the respective cylinder include the Rod Eye, Pivot Pin and Clevis Bracket. To select the proper part number for any desired accessory refer to the charts below.

CL

1.56

2.03

2.50

CW-

ØDD

(X4)

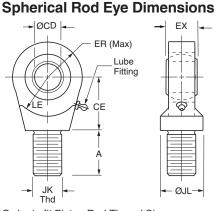
Cast Ductile Iron

ICF

R

-CW

ØCD ±.001


Shear Capacity

(lb)

8600

19300

34300

PL-2 Series Bore Ø	Part Number	CD Ø	Α	CE	EX	ER	LE	JK Thread	JL Ø	Load Capacity (lb)
1.50, 2.00, 2.50	0961000050	.5000 ⁻⁰⁰⁰⁵	0.72	0.86	0.44	0.80	0.78	7/16-20	0.88	2644
3.25, 4.00, 5.00	0961000075	.7500-0005	1.02	1.25	0.66	1.14	1.06	3/4-16	1.31	9441
6.00, 8.00	0961000100	1.0000-0005	1.52	1.88	0.88	1.34	1.45	1-14	1.50	16860

CD

Ø

.4997-0004

.7497-0005

.9997-0005

Part

Number

0839620000

0839630000

0839640000

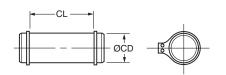
Μ

F

PL-2 Series

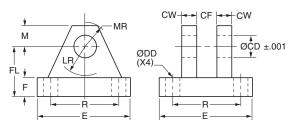
Bore

Ø


1.50, 2.00, 2.50

3.25, 4.00, 5.00

6.00, 8.00


Order to fit Piston Rod Thread Size.

Pivot Pin Dimensions

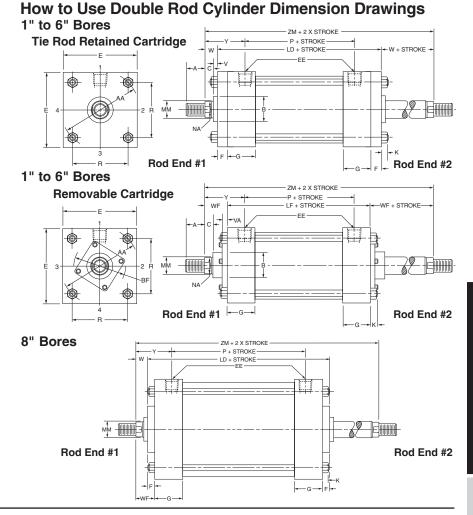
Pivot Pins are furnished with (2) Retainer Rings.

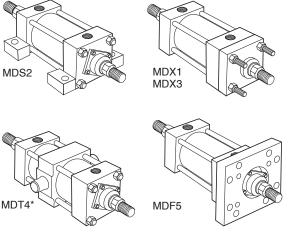
Clevis Bracket Dimensions

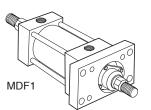
Fabricated Steel

Order to fit Cylinder Cap or Rod Eve

	iei Cap	or nou Eye.													
PL-2 Series Bore Ø	Pin Ø	Cast Ductile Iron Part Number	Fabricated Steel Part Number	CD Ø	CF	CW	DD Ø	E	F	FL	LR	М	MR	R	Load Capacity (lb)
1.50, 2.00, 2.50	0.500	0959450000	0839470000	0.503	0.45	0.50	0.41	3.00	0.50	1.50	0.94	0.50	0.63	2.05	5770
3.25, 4.00, 5.00	0.750	0959300000	0839480000	0.753	0.67	0.63	0.53	3.75	0.63	2.00	1.38	0.88	1.00	2.76	9450
6.00, 8.00	1.000	0959310000	0839490000	1.003	0.89	0.75	0.53	5.50	0.75	2.50	1.69	1.00	1.19	4.10	14300




To determine dimensions for a double rod cylinder, first refer to the desired single rod mounting style cylinder shown on preceding pages of this catalog. After selecting necessary dimensions from that drawing, return to this page and supplement the single rod dimensions with those shown below. Note that double rod cylinders have a head (Dim. G) at both ends and that dimension LD or LF replaces LB or LG. The double rod dimensions differ from, or are in addition to those for single rod cylinders shown on preceding pages and provide the information needed to completely dimension a double rod cylinder. On a double rod cylinder where the two ends are different, be sure to clearly state which rod end is to be assembled at which end.


Port position 1 is standard. If other than standard, specify position 2, 3 or 4 when viewed from one end only.

If only one end of these Double Rod Cylinders is to be cushioned, be sure to specify clearly which end this will be.

Specify XI dimension from rod end #1.

All dimensions are in inches and apply to standard rod sizes only. For alternate rod sizes, determine all envelope dimensions (within LD dim.) as described above and then use appropriate rod end dimensions for proper rod size from single rod cylinder.

	Ded		Add Stroke						
Bore	Rod Dia. MM	LD	LF	SS	ZM				
1	1/2	4 ³ / ₄	4 ¹ /8	3 ³ /8	6				
1 ¹ / ₂	⁵ /8	47/8	4 ¹ /8	3 ³ /8	6 ¹ /8				
2	⁵ /8	47/8	4 ¹ /8	3 ³ /8	6 ¹ /8				
2 ¹ / ₂	1	5	4 ¹ / ₄	3 ¹ / ₂	7				
3 ¹ / ₄	1	6	4 ³ / ₄	3 ³ / ₄	7 ¹ / ₂				
4	1 ³ /8	6	4 ³ / ₄	3 ³ / ₄	8				
5	1 ³ / ₄	6 ¹ /4	5	35/8	8 ³ / ₄				
6	1 ³ / ₄	7	5 ¹ /2	4 ¹ /8	9 ¹ / ₄				
8	2	7 ¹ /8	55/8	4 ¹ / ₄	9 ⁵ /8				
Repl	aces:	LB	LG	SA	_				
On single rod mounting styles:		All Mtg.	Styles	MS2	All Mtgs.				

*Mounting style MDT4 not available in 1" bore size.

Schrader Bellows offers a complete range of cylinder accessories to assure flexibility and versatility in present or future cylinder applications.

Rod End Accessories

Accessories offered for the rod end of the cylinder include: Rod Clevis, Eye Bracket, Knuckle, Clevis Bracket and Pivot Pin. To select the proper part number for any desired accessory, refer to Chart A below and look opposite the thread size of the rod end as indicated in the first column. The Pivot Pins, Eye Brackets and Clevis Brackets are listed opposite the thread size which their mating Knuckles or Clevises fit.

Accessory Load Capacity

The various accessories on this and the following pages have been load rated for your convenience. The load capacity shown in pounds is the recommended maximum load for that accessory based on a 4:1 design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

Chart A

Thread Size	Pin	Rod Cl	evis	Mounting Pla	ate or Eye Bracket	Pivot Pin		
	Ø	Part	Load	Forged Steel	or Cast Ductile Iron	Part	Shear	
		Number	Capacity (Ib)	Part Number	Load Capacity (Ib)	Number	Capacity (lb)	
5/16-24	0.312	0512210000 ¹	2600	0959810031	1850	-	_	
7/16-20	0.500	0509400000	4250	0959810050 ²	4620	0683680000	8600	
1/2-20	0.500	0509410000	4900	0959810050 ²	4620	0683680000	8600	
3/4-16	0.750	0509420000	11200	0959810075 ²	12370	0683690000	19300	
3/4-16	0.750	1332840000	11200	0959810075 ²	12370	0683690000	19300	
7/8-14	1.000	0509430000	18800	0959810100 ²	20450	0683700000	34300	
1-14	1.000	0509440000	19500	0959810100 ²	20450	0683700000	34300	
1-14	1.000	1332850000	19500	0959810100 ²	20450	0683700000	34300	
1 1/4-12	1.375	0509450000	33500	0959810138	33500	0683710000	65000	
1 1/4-12	1.375	1332860000	33500	0959810138	33500	0683710000	65000	
1 1/2-12	1.750	0509460000	45600	0959810175	49480	0683720000	105200	
1 3/4-12	2.000	0509470000	65600	0959810200 ²	70100	0683730000	137400	
1 7/8-12	2.000	0509480000	65600	0959810200 ²	70100	0683730000	137400	
2 1/4-12	2.500	0509490000	98200	0959810250 ²	98200	0683740000	214700	
2 1/2-12	3.000	0509500000	98200	0959810300 ²	121940	0683750000	309200	
2 3/4-12	3.000	0509510000	98200	0959810300 ²	121940	0683750000	309200	
3 1/4-12	3.500	0509520000	156700	0959810350	187910	0735450000	420900	
3 1/2-12	4.000	0509530000	193200	0959810400	268000	0735470000	565800	
4-12	4.000	0509540000	221200	0959810400	268000	0735470000	565800	

¹ Includes pivot pin.

 $^{\rm 2}$ Cylinder accessory dimensions conform to ANSI/NFPA/T3.6.8 R3-2010.

Mounting Plates

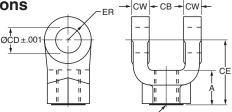
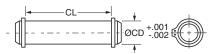

Mounting Plates for Style MP1 (clevis mounted) cylinders are offered. To select proper part number for your application, refer to Chart B at right.

Chart B

PL-2 Series										
Mounting Plate Part Number	Bore Ø									
0960160044	1.00									
0959810050	1.50 , 2.00, 2.50									
0959810075	3.25, 4.00, 5.00									
0959810100	6.00, 8.00									



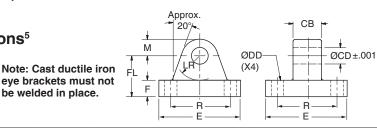
Rod Clevis Dimensions

				KK TH	READ —			
Part Number ¹	Pin Ø	Α	СВ	CD Ø	CE	CW	ER	KK Thread
0512210000 ²	0.310	0.81	0.34	0.314	2.25	0.20	0.30	5/16-24
0509400000	0.500	0.75	0.77	0.503	1.50	0.49	0.50	7/16-20
0509410000	0.500	0.75	0.77	0.503	1.50	0.49	0.50	1/2-20
0509420000	0.750	1.13	1.27	0.753	2.13	0.62	0.75	3/4-16
1332840000	0.750	1.13	1.27	0.753	2.38	0.62	0.75	3/4-16
0509430000	1.000	1.63	1.52	1.003	2.94	0.74	1.00	7/8-14
0509440000	1.000	1.63	1.52	1.003	2.94	0.74	1.00	1-14
1332850000	1.000	1.63	1.52	1.003	3.13	0.74	1.00	1-14
0509450000	1.375	1.88	2.04	1.378	3.75	0.99	1.38	1 1/4-12
1332860000	1.375	2.00	2.04	1.378	4.13	0.99	1.38	1 1/4-12
0509460000	1.750	2.25	2.54	1.753	4.50	1.24	1.75	1 1/2-12
0509470000	2.000	3.00	2.54	2.003	5.50	1.24	2.00	1 3/4-12
0509480000	2.000	3.00	2.54	2.003	5.50	1.24	2.00	1 7/8-12
0509490000	2.500	3.50	3.04	2.503	6.50	1.49	2.50	2 1/4-12
0509500000	3.000	3.50	3.04	3.003	6.75	1.49	2.75	2 1/2-12
0509510000	3.000	3.50	3.04	3.003	6.75	1.49	2.75	2 3/4-12
0509520000	3.500	3.50 ³	4.04	3.503	7.75	1.98	3.50	3 1/4-12
0509530000	4.000	4.00 ³	4.54	4.003	8.81	2.23	4.00	3 1/2-12
0509540000	4.000	4.00 ³	4.54	4.003	8.81	2.23	4.00	4-12

Pivot Pin Dimensions

Part Number	CD Ø	CL
0683680000	0.500	1.88
0683690000	0.750	2.63
0683700000	1.000	3.13
0683710000	1.375	4.19
0683720000	1.750	5.19
0683730000	2.000	5.19
0683740000	2.500	6.19
0683750000	3.000	6.25
0735450000	3.500	8.25
07354700004	4.000	9.00

⁴ This size supplied with cotter pins.


Notes:

- Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
- Pivot Pins are furnished with (2) Retainer Rings.
- Pivot Pins must be ordered as a separate item if to be used with Knuckles, Rod Clevises, or Clevis Brackets.

¹ Rod Clevises with pin diameters 0.312 thru 1.375 are forged steel. Rod Clevises with 1.750 pin diameter and larger are cast ductile iron. ² Includes Pivot Pin

³Consult appropriate cylinder rod end dimensions for compatibility.

Forged Steel or Cast Ductile Iron Mounting Plate or Eye Bracket Dimensions⁵

Cast or Forged ⁶	Pin	СВ	CD	DD	E	F	FL	LR	М	R
Part Number	Ø		Ø	Ø	(As Cast)				(As Cast)	
0959810031	0.312	0.31	0.314	0.27	2.25	0.38	1.00	0.59	0.38	1.75
0959810050	0.500	0.75	0.503	0.41	2.50	0.38	1.13	0.69	0.50	1.63
0959810075	0.750	1.25	0.753	0.53	3.50	0.63	1.88	1.13	0.75	2.55
0959810100	1.000	1.50	1.003	0.66	4.50	0.88	2.38	1.37	1.00	3.25
0959810138	1.375	2.00	1.378	0.66	5.00	1.007	3.00	1.88	1.38	3.82
0959810175	1.750	2.50	1.753	0.91	6.50	1.257	3.38	2.13	1.75	4.95
0959810200	2.000	2.50	2.003	1.06	7.50	1.50	4.00	2.38	2.00	5.73
0959810250	2.500	3.00	2.503	1.19	8.50	1.75	4.75	2.88	2.50	6.58
0959810300	3.000	3.00	3.003	1.31	9.50	2.00	5.25	3.13	3.00	7.50
0959810350	3.500	4.00	3.503	1.81	12.63	2.50 ⁸	6.50 ⁸	3.88	3.50	9.62
0959810400	4.000	4.50	4.003	2.06	14.88	3.00 ⁸	7.50 ⁸	4.38	4.06	11.45

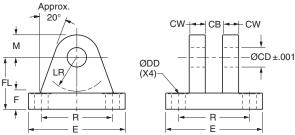
⁵ When used to mate with the Rod Clevis, select by pin diameter in the table above.

⁶ Eye Brackets with pin diameters 0.500 thru 1.000 are forged steel. Eye Brackets with 0.312 and 1.375 pin diameter and larger are cast ductile iron. ⁷ These dimensions vary from NFPA standard. F is increased by 0.13. Sufficient LR clearance remains for full swing arc with Schrader Bellows cap clevis cylinders and rod clevises.

⁸ Mounting base thickness dimension F is increased on these sizes to provide greater load capacity than the former fabricated steel design. Cast ductile iron dimensions F and FL are 0.81 larger for 3.500 pin diameter and 1.06 larger for 4.000 pin diameter.

Rod End Accessories

Accessories offered for the rod end of the cylinder include Rod Clevis, Eye Bracket, Knuckle, Clevis Bracket, and Pivot Pin. To select the proper part number for any desired accessory, refer to the table below or on the opposite page and look in the row to the right of the rod thread in the first column. For economical accessory selection, it is recommended that rod end style 2 be specified on your cylinder order.

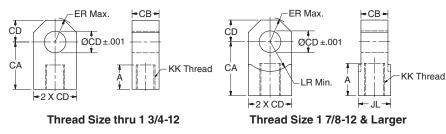

Accessory Load Capacity

The various accessories have been load rated for your convenience. The load capacity in pounds is the recommended maximum load for that accessory based on a 4:1 design factor in tension. (Pivot Pin is rated in shear.) Before specifying, compare the actual load or the tension (pull) force at the maximum operating pressure of the cylinder with the load capacity of the accessory you plan to use. If load or pull force of cylinder exceeds load capacity of accessory, consult factory.

Thread	Pin	Knucl	kle		Clevis	Bracket		Pivot	Pin
Size	Ø	Part Number	Load Capacity		l Steel or uctile Iron	Fabrica	ated Steel	Part Number	Shear Capacity
			(lb)	Part Number	Load Capacity (lb)	Part Number	Load Capacity (lb)		(lb)
5/16-24	0.438	0740750000	3300	0960160044	2830	0740760000	3600	0740780000	6600
7/16-20	0.500	0690890000	5000	0960160050	7740	0692050000	7300	0683680000	8600
1/2-20	0.500	0690900000	5700	0960160050	7740	0692050000	7300	0683680000	8600
3/4-16	0.750	0690910000	12100	0960160075	13600	0692060000	10880	0683690000	19300
7/8-14	1.000	0690920000	13000	0960160100	23000	0692070000	15180	0683700000	34300
1-14	1.000	0690930000	21700	0960160100	23000	0692070000	15180	0683700000	34300
1 1/4-12	1.375	0690940000	33500	0960160138	39500	0692080000	23560	0683710000	65000
1 1/2-12	1.750	0690950000	45000	0960160175	49480	0692090000	21520	0683720000	105200
1 3/4-12	2.000	0690960000	53500	0960160200	72400	0692100000	26000	0692150000	137400
1 7/8-12	2.000	0962160000	75000	0960160200	72400	0692100000	26000	0692150000	137400
2 1/4-12	2.500	0962170000	98700	0960160250	98700	0692110000	28710	0683740000	214700
2 1/2-12	3.000	0962180000	110000	0960160300	123300	0692120000	28190	0683750000	309200
2 3/4-12	3.000	0962190000	123300	N/A	N/A	0692130000	31390	0692160000	309200
3 1/4-12	3.500	0962200000	161300	0960160350	200400	0735420000	80250	0735450000	420900
3 1/2-12	3.500	0962210000	217300	0960160350	200400	0735420000	80250	0735450000	420900
4-12	4.000	0962220000	273800	0960160400	292100	0735430000	98420	0821810000	565800
N/A	4.000	N/A	N/A	N/A	N/A	N/A	N/A	0735470000 ¹	565800

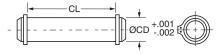
¹ This size supplied with cotter pins.

Forged Steel or Cast Ductile Iron Clevis Bracket Dimensions


Note: Cast ductile iron clevis brackets must not be welded in place.

			-	— E ———	-	⊲ E	•				
Cast or Forged ²	Pin	СВ	CD	CW	DD	E	F	FL	LR	M	R
Part Number	Ø		Ø		Ø	(As Cast)				(As Cast)	
0960160044	0.438	0.46	0.440	0.37	0.27	2.25	0.38	1.00	0.56	0.44	1.75
0960160050	0.500	0.78	0.503	0.50	0.41	2.50	0.38	1.13	0.63	0.56	1.63
0960160075	0.750	1.28	0.753	0.63	0.53	3.50	0.63	1.88	1.06	0.75	2.56
0960160100	1.000	1.53	1.003	0.75	0.66	4.50	0.75	2.25	1.25	1.00	3.25
0960160138	1.375	2.03	1.378	1.00	0.66	5.00	0.88	3.00	1.94	1.38	3.81
0960160175	1.750	2.53	1.753	1.25	0.91	6.50	0.94	3.13	2.00	1.75	4.94
0960160200	2.000	2.53	2.003	1.25	1.06	7.50	1.38	3.75	2.25	2.00	5.75
0960160250	2.500	3.03	2.503	1.50	1.19	8.50	1.50	4.50	2.81	2.50	6.59
0960160300	3.000	3.03	3.003	1.50	1.31	9.50	1.88	5.38	3.31	3.00	7.50
0960160350	3.500	4.03	3.503	2.00	1.81	12.63	2.31	6.38	3.88	3.50	9.62
0960160400	4.000	4.53	4.003	2.25	2.06	14.88	2.88	7.50	4.50	4.00	11.50

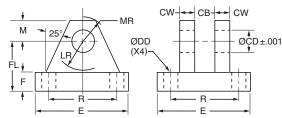
² Clevis Brackets with pin diameters 0.500 thru 1.000 are forged steel. Clevis Brackets with 0.438 and 1.375 pin diameter and larger are cast ductile iron.



Knuckle Dimensions

Part Number	Pin Ø	Α	CA	СВ	CD Ø	ER	JL	LR min	KK Thread
0740750000	0.438	0.75	1.50	0.43	0.440	0.53	_	_	5/16-24
0690890000	0.500	0.75	1.50	0.75	0.503	0.59	_	_	7/16-20
0690900000	0.500	0.75	1.50	0.75	0.503	0.59	_	_	1/2-20
0690910000	0.750	1.13	2.06	1.25	0.753	0.87	-	-	3/4-16
0690920000	1.000	1.13	2.38	1.50	1.003	1.15	_	_	7/8-14
0690930000	1.000	1.63	2.81	1.50	1.003	1.15	_	-	1-14
0690940000	1.375	2.00	3.44	2.00	1.378	1.55	-	-	1 1/4-12
0690950000	1.750	2.25	4.00	2.50	1.753	1.96	_	—	1 1/2-12
0690960000	2.000	2.25	4.38	2.50	2.003	2.24	-	-	1 3/4-12
0962160000	2.000	3.00	5.00	2.50	2.003	2.24	3.00	2.77	1 7/8-12
0962170000	2.500	3.50	5.81	3.00	2.503	2.76	3.50	3.09	2 1/4-12
0962180000	3.000	3.50	6.13	3.00	3.003	3.30	4.00	3.58	2 1/2-12
0962190000	3.000	3.63	6.50	3.50	3.003	3.30	4.00	3.58	2 3/4-12
0962200000	3.500	4.50	7.63	4.00	3.503	3.87	6.00	4.18	3 1/4-12
0962210000	3.500	5.00	7.63	4.00	3.503	3.87	6.00	4.18	3 1/2-12
0962220000	4.000	5.50	9.13	4.50	4.003	4.43	6.00	4.80	4-12

Pivot Pin Dimensions



Part Number	CD Ø	CL						
0740780000	0.438	1.31						
0683680000	0.500	1.88						
0683690000	0.750	2.63						
0683700000	1.000	3.13						
0683710000	1.375	4.19						
0683720000	1.750	5.19						
0692150000	2.000	5.69						
0683740000	2.500	6.19						
0683750000	3.000	6.25						
0692160000	3.000	6.75						
0735450000	3.500	8.25						
0821810000	4.000	8.69						
0735470000 ¹	0735470000 ¹ 4.000 9.00							
¹ This size supplie	ed with co	tter pins.						

Notes:

- Pivot Pins are furnished with Clevis Mounted Cylinders as standard.
- Pivot Pins are furnished with (2) Retainer Rings.
- Pivot Pins must be ordered as a separate item if to be used with Knuckles, Rod Clevises, or Clevis Brackets.

Fabricated Steel Clevis Bracket Dimensions

Fabricated Steel Part Number	Pin ² Ø	СВ	CD Ø	CW	DD Ø	E	F	FL	LR	М	MR	R
0692050000	0.500	0.80	0.503	0.50	0.41	3.50	0.50	1.50	0.75	0.50	0.63	2.55
0692060000	0.750	1.30	0.753	0.63	0.53	5.00	0.63	1.88	1.19	0.75	0.91	3.82
0692070000	1.000	1.59	1.003	0.75	0.66	6.50	0.75	2.25	1.50	1.00	1.25	4.95
0692080000	1.375	2.09	1.378	1.00	0.66	7.50	0.88	3.00	2.00	1.38	1.66	5.73
0692090000	1.750	2.59	1.753	1.25	0.91	9.50	0.88	3.63	2.75	1.75	2.22	7.50
0692100000	2.000	2.59	2.003	1.50	1.06	12.75	1.00	4.25	3.19	2.25	2.78	9.40
0692110000	2.500	3.09	2.503	1.50	1.19	12.75	1.00	4.50	3.50	2.50	3.13	9.40
0692120000	3.000	3.09	3.003	1.50	1.31	12.75	1.00	6.00	4.25	3.00	3.59	9.40
0692130000	3.000	3.59	3.003	1.50	1.31	12.75	1.00	6.00	4.25	3.00	3.59	9.40
0735420000	3.500	4.09	3.503	2.00	1.81	15.50	1.69	6.69	5.00	3.50	4.13	12.00
0735430000	4.000	4.59	4.003	2.00	2.06	17.50	1.94	7.69	5.75	4.00	4.88	13.75

² Clevis Bracket for 0.438 diameter pin is only available in cast ductile iron construction. See part number 0960160044 on previous page.

B

Schrader "Style 6" Piston Rod End

Rod end flange coupling for Series PL-2 Hydraulic Cylinders

Simplifies alignment

Style 6 Rod End

- Reduces assembly time
- Allows full rated hydraulic pressure in push and pull directions
- Available in 5/8" through 5-1/2" piston rod diameters

Ø AF AE AE WG WG WG WG WG

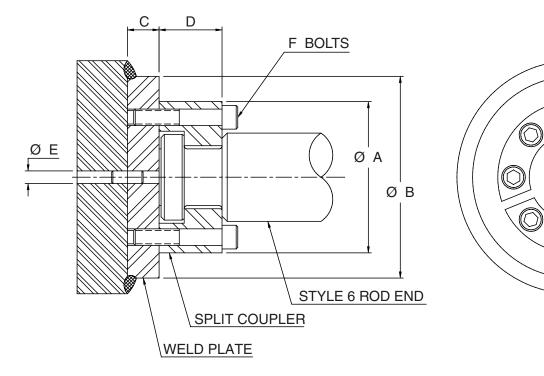
Dimensions Style 6 Rod End

MM Rod Dia.	AD	AE	AF	AM	WG
⁵ /8	⁵ /8	1/4	3/8	.57	1 ³ / ₄
1	¹⁵ / ₁₆	3/8	¹¹ / ₁₆	.95	2 ³ /8
1 ³ /8	1 ¹ / ₁₆	3/8	7/8	1.32	2 ³ / ₄
1 ³ / ₄	1 ⁵ / ₁₆	1/2	1 ¹ /8	1.70	3 ¹ /8
2	1 ¹¹ / ₁₆	5/8	1 ³ /8	1.95	33/4
2 ¹ / ₂	1 ¹⁵ / ₁₆	3/4	1 ³ / ₄	2.45	4 ¹ / ₂
3	27/16	7/8	2 ¹ / ₄	2.95	47/8
3 ¹ / ₂	211/16	1	2 ¹ / ₂	3.45	55/8
4	2 ¹¹ /16	1	3	3.95	5 ³ / ₄
4 ¹ / ₂	3 ³ / ₁₆	1 ¹ / ₂	3 ¹ / ₂	4.45	6 ¹ /2
5	3 ³ / ₁₆	1 ¹ / ₂	37/8	4.95	65/8
5 ¹ /2	3 ¹⁵ / ₁₆	1 ⁷ /8	4 ³ / ₈	5.45	7 ¹ / ₂

See Cylinder Catalog for F, G and RT per bore and series.

Consult Factory for availability of mounting accessories and Hardware.

How To Order


Complete Model Number and place a "6" in the Piston Rod End designator position.

Example: PLD113561X12.00

 $\langle\!\langle \rangle$

Schrader "Style 6" Piston Rod End

Split Couplers and Weld Plates

WARNING: Piston rod separation from the machine member can result in severe personal injury or even death to nearby personnel. The cylinder user must make sure the weld holding the weld plate to the machine is of sufficient quality and size to hold the intended load. The cylinder user must also make sure the bolts holding split coupler to the weld plate are of sufficient strength to hold the intended load and installed in such a way that they will not become loose during the machine's operation.

Table 1 — Part Numbers and Dimensions

Rod Dia.	А	В	с	D	E	F	Bolt Size	Bolt Circle	Split Coupler Part No.	Weld Plate Part No.
⁵ /8	1.50	2.00	.50	.56	.250	4	#10-24 x .94 LG	1.125	1472340062	1481740062
1	2.00	2.50	.50	.88	.250	6	.250-20 x 1.25 LG	1.500	1472340100	1481740100
1 ³ /8	2.50	3.00	.63	1.00	.250	6	.312-18 x 1.50 LG	2.000	1472340138	1481740138
1 ³ / ₄	3.00	4.00	.63	1.25	.250	8	.312-18 x 1.75 LG	2.375	1472340175	1481740175
2	3.50	4.00	.75	1.63	.375	12	.375-16 x 2.25 LG	2.687	1472340200	1481740200
2 ¹ / ₂	4.00	4.50	.75	1.88	.375	12	.375-16 x 2.50 LG	3.187	1472340250	1481740250
3	5.00	5.50	1.00	2.38	.375	12	.500-13 x 3.25 LG	4.000	1472340300	1481740300
3 ¹ / ₂	5.88	7.00	1.00	2.63	.375	12	.625-11 x 3.50 LG	4.687	1472340350	1481740350
4	6.38	7.00	1.00	2.63	.375	12	.625-11 x 3.50 LG	5.187	1472340400	1481740400
4 ¹ / ₂	6.88	8.00	1.00	3.13	.375	12	.625-11 x 4.00 LG	5.687	1472340450	1481740450
5	7.38	8.00	1.00	3.13	.375	12	.625-11 x 4.00 LG	6.187	1472340500	1481740500
5 ¹ /2	8.25	9.00	1.25	3.88	.375	12	.750-10 x 5.00 LG	6.875	1472340550	1481740550

Note: Screws are not included with split coupler or weld plate.

How to Order PL-2 Series Cylinders

When ordering PL-2 Series cylinders, please review the following:

Note: Duplicate cylinders can be ordered by giving the SERIAL NUMBER from the nameplate of the original cylinder. Factory records supply a quick positive identification.

Piston Rods: Specify model number code based on bore size and rod diameter. Give thread style number for a standard thread or specify dimensions. See "Style 0 Rod End" below.

Cushions: If cushions are required specify according to the model number on the next page. If the cylinder is to have a double rod and only one cushion is required, be sure to specify clearly which end of the cylinder is to be cushioned.

Special Modifications: Additional information is required on orders for cylinders with special modifications. This is best handled with descriptive notes. For further information, consult factory.

Lipseal™ Piston (if desired): Schrader Bellows Lipseal™ pistons are offered as an option at no extra cost in the Series PL-2 cylinders. With this feature, zero leakage under static holding conditions is attained.

Fluid Medium: Series PL-2 hydraulic cylinders are equipped with seals for use with hydraulic oil. If other than hydraulic oil will be used, specify class of fluid (See Catalog section C.)

See Section C for pressure ratings relating to bore and rod sizes.

Water Service Modifications

When requested, Schrader Bellows can supply Series PL-2 cylinders with standard modifications that make the cylinders suitable for use with water as the fluid medium. The modifications include chrome-plated cylinder bore; electroless nickel-plated, non-wearing internal surfaces; Lipseal style piston, Buna N Seals and chrome-plated, precipitation hardened stainless steel piston rod.

Class 1 Seals

Class 1 seals are the seals provided as standard in a cylinder assembly unless otherwise specified. For further information on fluid compatibility or operating limitations of all components, see section C.

For the PL-2 series cylinders the following make-up Class 1 Seals:

Primary Piston Rod Seal - Enhanced Polyurethane

Style 0 Rod End

A style 0 rod end indicates a special rod end configuration. All special piston rod dimensions must have **all three:** KK; A; or W/ WF specified with the rod fully retracted. A sketch or drawing should be submitted for rod ends requiring special machining such as snap ring grooves, keyways, tapers, multiple diameters, etc. It is good design practice to have this machining done on a diameter at least 0.065 inches smaller than the piston rod diameter. This allows the piston rod to have a chamfer preventing rod seal damage during assembly or maintenance.

Service Policy

On cylinders returned to the factory for repairs, it is standard policy for the Industrial Cylinder Division to make such part replacements as will put the cylinder in as good as new condition. Should the condition of the returned cylinder be such that expenses for repair would exceed the costs of a new one, you will be notified.

Address all correspondence and make shipments to, Service Department at your nearest regional plant.

Warranty – Schrader Bellows will warrant Series PL-2 cylinders modified for water or high water content fluid service to be free of defects in materials or workmanship, but cannot accept responsibility for premature failure due to excessive wear resulting from lack of lubricity, where failure is caused by corrosion, electrolysis or mineral deposits within the cylinder.

Piston Rod Wiper - Nitrile

Piston Seals – Nitrile lipseals with polymyte back-up washers Option – Nitrile lipseals with polymyte back-up washers O-Rings – Nitrile (nitrile back-up washer when used)

Standard style 6 rod ends with a longer than standard WG dimension should call out a style 0 end and the note: **same as 6 except WG=____**. A drawing should be submitted for special 6 rod ends that have specific tolerances or special radii. Special rod ends that have smaller than standard male threads, larger than standard female threads, or style 6 rod ends with smaller than standard AF or AE dimensions are to be reviewed by Engineering for proper strength at operating pressure.

Certified Dimensions

Schrader Bellows Industrial Cylinder Division guarantees that all cylinders ordered from this catalog will be built to dimensions shown. All dimensions are certified to be correct, and thus it is not necessary to request certified drawings.

How To Order Model Number 1 Model Number **By Model Number** Example: Туре **PL-2 Series Hydraulic** PL-2 Hydraulic Cylinders can be specified Single End - NPT Ports PL A10 PI 08 by model number by using the tables Double End - NPT Ports PM shown at right. Single End - SAE Ports ΡE Double End - SAE Ports PG 1. Type Select the Model Number Code which identifies single or double end. 2 Model Rod Bore Number 2. Bore & Rod Diameter Model Size Dia. Code Select the Model Number Code which Bore Rod Number 5 F11 1' identifies the desired bore size and rod Size Dia. Code 1³/8" F12 diameter combination. 1 1/2 S50 F13 1³/4 5/8" S10 3. Mounting & Cushioning 2" F14 21/2" F15 Select the Model Number Code which **1**¹/2" ⁵/8" A10 F16 3" identifies the desired mounting style and A11 1" 3¹/2" F17 cushioning option. 2" ⁵/8" B10 6" **1**3/8" G12 1" B11 4. Rod End Style **1**³/4" G13 1³/8' B12 Select the Model number Code which 2" G14 identifies the desired rod end thread style. 21/2 5/8 C10 2¹/2" G15 1" C11 3" G16 5. Seal Type 1³/8" C12 3¹/2" G17 Complete the Model Number by selecting 1³/4 C13 4" G18 the type of seals desired. Piston rings 1" 1³/8" J12 31/4 D11 8' optional, lip seals standard. 1³/8" D12 **1**³/₄" J13 6. Stroke Length **1**³/4" 2" J14 D13 It is necessary to specify the stroke length 2" D14 21/2 J15 desired following the Model Number. For 3" J16 1" 4" E11 example: PLA100821 with 6" stroke. 31/2 J17 1³/8" E12 4" J18 Specifying the Desired 1³/4 E13 4¹/2" J19 2" Trunnion Location E14 5" .141 2¹/2" F15 For cylinders with intermediate trunnion 5¹/2" J42 mounting, the dimension specified should be the distance from the piston rod 3 reference point to the center-line of the Model Number Code NFPA Non- Cush. Cush. Cush. Style Cush. Head Cap Both Mounting Style The Example Would Identify: A single end hydraulic cylinder to be Side Lug MS2 05 06 07 08 Side Tap MS4 15 16 1 1/2" bore size, 5/8" piston rod diameter, 13 14 Head Rectangular Flange (1-6) MF1 21 22 23 24 side lug mount, cushioned both ends, with 27 28 Cap Rectangular Flange (1-6) MF2 25 26 a small male rod thread. Buna N Seals. Head Square Flange (1-6) MF5 29 30 31 32 and a 6" stroke. Cap Square Flange (1-6) MF6 33 34 35 36 **Optional Mounting Accessories** Head Square (8) 38 ME3 37 39 40 42 43 44 Specify separately the part number for Cap Square (8) ME4 41 Tie Rods Extended Both Ends 56 MX1 53 54 55 desired optional mounting accessories. Tie Rods Extended Cap End MX2 57 58 59 60 Tie Rods Extended Head End MX3 61 62 63 64 72 Note: For special modifications other than Head Trunnion MT1 69 70 71 73 74 75 Cap Trunnion MT2 76 piston rod ends use S in the tenth position of the model number and describe special Intermediate Fixed Trunnion MT4 77 78 79 80 features required. Cap Fixed Clevis MP1 81 82 83 84 Example: PLA100821S 6" Stroke Spherical Bearing MPU3 89 90 91 92 Ports to be in position # 2 NO MOUNT MX0 93 94 95 96 4 Rod End Style Model Number Code Small Male 2 5 Short Female 3 Model Number Code Seal Type Intermediate Male 4 Buna N Seals w/Lip Type Piston Note on Seals: Cylinders ordered with Flange Coupling 6 Fluorocarbon Seals w/Lip Type Piston 2 Buna N Seals will have all soft seals from Buna N except piston rod seals Female Thread for Buna N Seals with Piston Rings 3 7 which will be enhanced polyurethane. Spherical Rod Eye Fluorocarbon Seals with Piston Rings 4 Backup washers for piston lipseals will Special - Specify 0 High Temperature Seals 8 be polymite. For further information on fluid compatibility and other seals see Section C. Specify Stroke Length 6.00"

1 w/6" Stroke

2

6

pin.

Linear Alignment Couplers are available in 12 standard thread sizes...

Cost Saving Features and Benefits Include:

- Maximum reliability for trouble-free operation, long life and lower operating costs
- Increased cylinder life by reducing wear on piston and rod bearings
- Simplified cylinder installation and reduced assembly costs
- Increased rod bearing and rod seal life for lower maintenance costs

Alignment Coupler

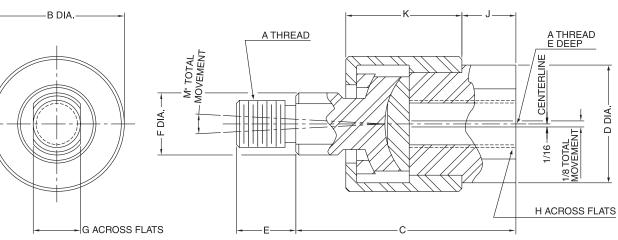
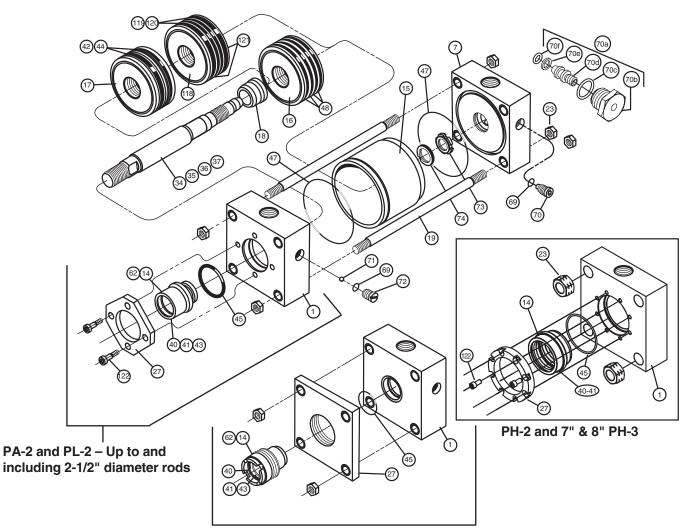
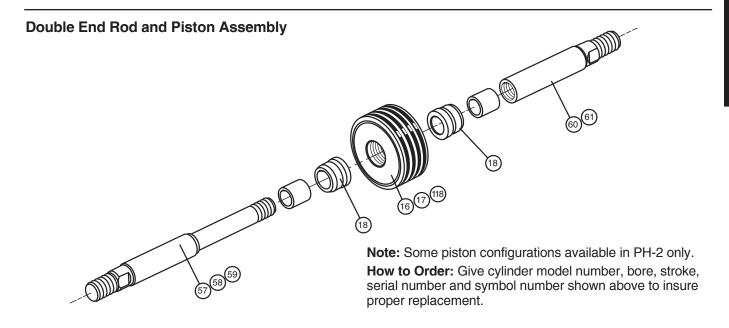


 Table 1 — Part Numbers and Dimensions


Part No.	A	B Ø	С	D Ø	E	F Ø	G	н	J	к	м	Max. Pull Load (lb)	Approx. Weight (lb)
1347570031	⁵ / ₁₆ -24	1 ¹ /8	1 ³ / ₄	¹⁵ / ₁₆	1/2	1/2	3/8	3/4	3/8	¹⁵ / ₁₆	6°	1200	.35
1347570038	³ /8-24	1 ¹ /8	1 ³ / ₄	¹⁵ / ₁₆	1/2	1/2	3/8	3/4	3/8	¹⁵ / ₁₆	6°	2425	.35
1347570044	7/16-20	1 ³ /8	2	1 ¹ /8	3/4	5/8	1/2	7/8	3/8	1 ³ / ₃₂	6°	3250	.55
1347570050	¹ /2-20	1 ³ /8	2	1 ¹ /8	3/4	5/8	1/2	7/8	3/8	1 ³ /32	6°	4450	.55
1347570063	⁵ /8-18	1 ³ /8	2	1 ¹ /8	3/4	⁵ /8	1/2	7/8	3/8	1 ³ /32	6°	6800	.55
1347570075	³ /4-16	2	2 ⁵ /16	1 ⁵ /8	1 ¹ /8	¹⁵ / ₁₆	3/4	1 ⁵ / ₁₆	⁷ / ₁₆	1 ⁹ / ₃₂	6°	9050	1.4
1347570088	⁷ /8- 1 4	2	2 ⁵ / ₁₆	1 ⁵ /8	1 ¹ /8	¹⁵ / ₁₆	3/4	1 ⁵ / ₁₆	⁷ / ₁₆	1 ⁹ / ₃₂	6°	14450	1.4
1347570100	1-14	31/8	3	2 ³ /8	1 ⁵ /8	1 ⁷ / ₁₆	1 ¹ / ₄	17/8	3/4	1 ²⁵ /32	6°	19425	4.8
1347570125	1 ¹ /4-12	3 ¹ / ₈	3	2 ³ /8	1 ⁵ /8	1 ⁷ / ₁₆	1 ¹ / ₄	17/8	3/4	1 ²⁵ /32	6°	30500	4.8
1337390125	1 ¹ /4-12	31/2	4	2	2	1 ¹ / ₂	1 ¹ / ₄	1 ¹¹ / ₁₆	3/4	2 ¹ / ₂	10°	30500	6.9
1337390150	1 ¹ /2-12	4	4 ³ / ₈	2 ¹ / ₄	2 ¹ / ₄	1 ³ / ₄	1 ¹ / ₂	1 ¹⁵ / ₁₆	7/8	2 ³ / ₄	10°	45750	9.8
1337390175	1 ³ /4-12	4	4 ³ / ₈	2 ¹ / ₄	2 ¹ / ₄	1 ³ / ₄	1 ¹ / ₂	1 ¹⁵ / ₁₆	7/8	2 ³ / ₄	10°	58350	9.8
1337390188	17/8-12	5	5 ⁵ /8	3	3	2 ¹ / ₄	2	25/8	1 ³ /8	3 ³ /8	10°	67550	19.8

How to Order Linear Alignment Couplers — When ordering a cylinder with a threaded male rod end, specify the coupler of equal thread size by part number as listed in Table 1, i.e.; Piston Rod "KK" dimension is ³/₄" - 16", specify coupler part number 1347570075.



Catalog SB0106-8 Mounting / Parts Identification

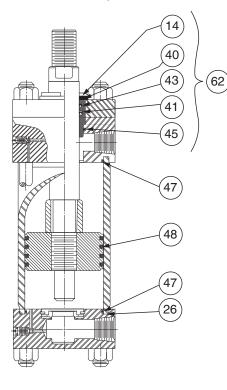
NFPA Style MX3	NFPA Style MX2	NFPA Style MX1		eplacement Mountings and Hardware
			Symbol	. •
(19)	(19)	(19)	2	Head, side lug mounting
NFPA	NFPA	NFPA	4	Head, side tap mounting
Style MF1	Style MF2	Style MF5	5	Head, trunnion mounting
28			8	Cap, side lug mounting
			10	Cap, side tap mounting
			11	Cap, trunnion mounting
	(29)	30	12	Cap, fixed clevis mounting
NFPA	NFPA	NFPA	19	Tie rod
Style ME3	Style MF6	Style ME4	20	Tie rod, head end mounting
			21	Tie rod, cap end mounting
			23	Tie rod nut
			27	Retainer
7" thru 14" PA-2 Series 8" Bore PL-2 Series	31	29B 7" thru 14" PA-2 Series 8" Bore PL-2 Series	28	Flange, rectangular mounting
NFPA	NFPA	NFPA	28A	Head, rectangular mounting
Style MS2	Style MS4	Style ME5	28B	Head, square mounting
(2)			29	Flange, rectangular mounting
			29A	Cap, rectangular mounting
			29B	Cap, square mounting
(8)	4	28A 27 Screws Not Shown	30	Flange, square mounting
			- 31	Flange, square mounting
NFPA Style MT1	21 NFPA Style MT4	NFPA Style ME6	66	Intermediate trunnion
	20		67	Screws, intermediate trunnion mtg.
			79	Socket head cap screws
			86	Clevis pin mounting
(5)	66 67 Saroura Not Shoura	(29A)	87	Retaining ring mounting
<u> </u>			How to	Order
	NFPA Style MP1	NFPA Style MT2	Give cyli serial nu above to	nder model number, bore, stroke, mber and symbol number shown insure proper replacement. mounting styles may not be available.
	12 87			

PA-2 and PL-2 - 3" diameter rods and over

Note: For specific mounting styles see page 32.

	Parts		Assemblie	es (Includes Symbol	Numbers Shown)		
Symbol	Description	Symbol	Description	Ring Type Piston	Lipseal Type Piston	Hi-Load Type Piston	
1	Head, ported, non-cushioned	C1SA	Head, ported, cushioned		1, 69, 70, 71 & 72		
7	Cap, ported, non-cushioned	C7SA	Cap, ported, cushioned		7, 69, 70, 73 & 74		
14	Gland	62	Gland cartridge kit		14, 40, 41, 43 & 45		
15	Cylinder body					•	
16	Piston body, ring type						
17	Piston body, lipseal type						
18	Cushion sleeve, cushioned cylinder only	_	_		_		
19	Tie rod						
23	Tie rod nut						
27	Retainer						
			Piston & rod assembly, single				
34	Piston rod, single rod type, non-cushioned	34SA	rod type — non-cushioned	16, 34 & 48	17, 34, 42 & 44*	34, 118, 119, 120 & 121*	
35	Piston rod, single rod type, cushioned head end	35SA	Piston & rod assembly, single rod type — cush. head end	16, 18, 35 & 48	17, 18, 35, 42 & 44*	35, 118, 119, 120 & 121	
36	Piston rod, single rod type, cushioned cap end	36SA	Piston & rod assembly, single rod type — cush. cap end	16, 36 & 48	17, 36, 42 & 44*	37, 118, 119, 120 & 121	
37	Piston rod, single rod type, cushioned both ends	37SA	Piston & rod assembly, single rod type — cush. both ends	16, 18, 37 & 48	17, 18, 37, 42 & 44	37, 118, 119, 120 & 121	
40	Wiperseal, gland					•	
41	Lipseal, gland						
42	Lipseal, piston						
43	Back-up washer, gland		0 1 1/3-				
44	Back-up washer, piston		Seal Kits		_		
45	O-ring, gland to head seal						
47	O-ring, cylinder body and seal						
48	Piston ring						
57	Piston rod, double rod type, non-cushioned	57SA	Piston & rod assembly, double rod type — non-cushioned	16, 48, 57 & 60	17, 42, 44*, 57 & 60	57, 60, 118, 119, 120 & 121	
58	Piston rod, double rod type, cushioned one end	58SA	Piston & rod assembly, double rod type — cushioned one end	16, 18, 48, 58 & 60	17, 18, 42, 44*, 58 & 60	18, 58, 60, 118, 119, 120 & 121	
59	Piston rod, double rod type, cushioned both ends	59SA	Piston & rod assembly, double rod type — cushioned both ends	16, 18, 48, 58 & 61	17, 18, 42, 44*, 58 & 61	18, 58, 61, 118, 119, 120 & 121	
60	Piston rod extension, double rod type, non-cushioned						
61	Piston rod extension, double rod type, cushioned	_	-		—		
69	O-ring, cushion adjustment & check valve screw						
70	Needle valve, cushion adjustment						
70a**	Needle valve, cushion adjustment - cartridge type						
70b	Cartridge screw						
70c	O-ring, cartridge screw						
70d	Needle screw		Cushion Kits				
70e	Back-up washer - needle screw	-	See table below.		_		
70f	O-ring - needle screw						
71	Ball, check valve						
72	Plug screw, check valve						
73	Cushion bushing, cap end floating check valve						
74	Retaining ring, floating cushion bushing						
75	Seal, cushion sleeve						
118	Piston, hi-load type	—	—		—		
119	Outer ring						
120	Inner ring	_	Seal Kits		_		
120	Wear ring						
122	Socket cap screws						
166	000101 000 0010100						

**In some cases the adjusting screw is installed in a cartridge. *Piston back-up washer (Symbol 44) not supplied on PA-2 Series air cylinders.


Cushion Hardware Kits

			PA-2 \$	Series			PL-2 \$	Series		
Bore	Rod	For Head /	Assemblies	For Cap A	ssemblies	For Head	Assemblies	For Cap A	ssemblies	
Size	Dia.	(Kits Include symb	ols 69, 70, 71, & 72)	(Kits Include symbol	(Kits Include symbols 69, 70, 71, & 72) (Kits Include symbols 69, 70, 71, & 72)		ols 69, 70, 71, & 72)	(Kits Include symbols 69, 70, 73, & 74)		
		Standard	Fluorocarbon	Standard	Fluorocarbon	Standard	Fluorocarbon	Standard	Fluorocarbon	
1	All	None	None	None	None	A63221102	A63211005	A63221102	A63211005	
1 1/2	5/8	A63211503	A63211005	A63211504	A63221502	A63221503	A63221503	A6321504	A63221502	
1 1/2	1	A63211002	A63211005	A03211504	A03221502	A63211002	A63211005	A0321504	A03221502	
2	5/8, 1	A63211503	A63221503	A63211504	A63221502	A63221503	A63221503	A6321504	A63221502	
2	1 3/8	A63211002	A63211005	A03211504	A03221502	A63211002	A63221503	A0321504	A03221502	
2 1/2	5/8 - 1 3/8	A63211503	A63221503	A60011E04	A60001500	A63221503	A63221503	A6321504	AC001504 AC000150	A63221502
2 1/2	1 3/4	A63211002	A63211005	A63211504	3211504 A63221502 -	A63211002	A63211005		AUJ221502	
3 1/4	All	A63213203	A63223203	A63213204	A63223202	A63213203	A63223203	A63213202	A63223202	
4	All	A63213203	A63223203	A63213204	A63223202	A63213203	A63223203	A63213202	A63223202	
5	All	A63213203	A63223203	A63213204	A63223202	A63213203	A63223203	A63213202	A63223202	
6	All	A63216003	A63226003	A63216004	A63226004	A63216003	A63226003	A63216004	A63226002	
7	All	A63216003	A63226003	A63216004	A63226004	-	-	-	-	
8	All	A63216003	A63226003	A63216004	A63229004	A63216003	A63226003	A63216004	A63226002	
10	All	A63216003	A63226003	A63219004	A63229004	-	-	-	-	
12	All	A63216003	A63226003	A63219204	A63229204	-	-	-	-	
14	All	A63216003	A63226003	A63219404	A63229404	-	-	-	-	

Symbol	Description
14	Gland cartridge
40	Gland wiperseal
41	Gland lipseal
42	Piston lipseal
43*	Gland back-up washer
44	Piston back-up washer
45	Gland to head o-ring
47	End seal o-ring
48	Piston ring
62	Gland cartridge kit

*Not used in PL-2 cylinders.

Piston Seal Options
Ring Type Piston (as shown above) Supplied as standard on PL-2 series hydraulic cylinders.
Lipseal Type Piston
42
Supplied as standard on PA 2

Supplied as standard on PA-2 series air cylinders. Optional for PL-2 series hydraulic cylinders.

Seal Kits for Class 1 & 2 Service

Material: Buna-N (Nitrile) except item 41, in PL-2 series which is polyurethane.

For operating temperature and fluid compatibility, see Section C, pages 54 & 55.

Gland and spanner wrenches are available to ease (rod) seal or gland cartridge removal without disassembly of the cylinder. (For rod diameters over 2 1/2".)

For detailed seal replacement instructions see service bulletin SB0995-M1, M2 and M3.

	PA-2 Cylir	nders Only	PL-2 Cylin	ders Only		
	Gland (Symbol 62) Cartridge Kits	Rod Seal Kits	Gland (Sym. 62) Cartridge Kits	Rod Seal Kits		
Rod Dia.	Contains Symbols 14, 40, 41, 43 & 45	Contains Symbols 40, 41, 43 & 45	Contains Symbols 14, 40, 41 & 45	Contains Symbols 40, 41 & 45	Gland Wrench	Spanner Wrench
1/2	A63210105	A63210305	A63210505	A63210705		
5/8	A63210108	A63210308	A63210508	A63210708		
1	A63210110	A63210310	A63210510	A63210710	Not	Not
1 3/8	A63210113	A63210313	A63210513	A63210713	Required	Required
1 3/4	A63210114	A63210314	A63210514	A63210714		
2	A63210120	A63210320	A63210520	A63210720	1	
2 1/2	A63210125	A63210325	A63210525	A63210725	1	
3	A63210130	A63210330	A63210530	A63210730	069596 0000	011677 0000
3 1/2	A63210135	A63210335	A63210535	A63210735	069597 0000	011677 0000
4	A63210140	A63210340	A63210540	A63210740	069598 0000	011678 0000
4 1/2	A63210145	A63210345	A63210545	A63210745	083877 0000	011678 0000
5	A63210150	A63210350	A63210550	A63210750	069599 0000	011678 0000
5 1/2	A63210155	A63210355	A63210555	A63210755	069600 0000	011678 0000

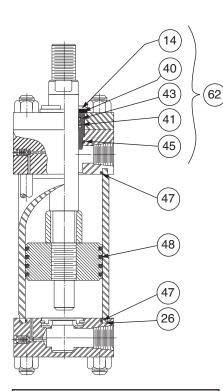
	Piston Seal Kits	Piston Seal Kits	Piston Ring Kits
	PA-2 Series	PL-2 Series	PL-2 Series
Bore Size	Contains 2 Each Symbols: 42, 44 & 47	Contains 2 Each Symbols: 42, 44 & 47	Contains 2 Each Symbols 47 & 4 Each Symbol 48
1	A63211006	A63211007	A63211008
1 1/2	A63211506	A63211507	A63211508
2	A63212006	A63212007	A63212008
2 1/2	A63212506	A63212507	A63212508
3 1/4	A63213206	A63213207	A63213208
4	A63214006	A63214007	A63214008
5	A63215006	A63215007	A63215008
6	A63216006	A63216007	A63216008
7	A63217006	-	_
8	A63218006	A63218007	A63218008
10	A63219006	-	-
12	A63219206	-	_
14	A63219406	-	_

		dy Seal Kits	Т	ie Rod Torque	
	PA-2 Series	PL-2 Series	PA-2 Spe	cifications (lb-ft)	
Bore Size	Contains 2 Each Symbol 47	Contains 2 Each Symbol 47	Steel Cylinder Body	Brass Cylinder Body	PL-2 Series
1	A63211010	A63211010	2	1	2
1 1/2	A63215010	A63215010	5	3	5
2	A63220010	A63220010	11	6	11
2 1/2	A63225010	A63225010	11	6	11
3 1/4	A63232010	A63232011	25	18	25
4	A63240010	A63240011	25	18	25
5	A63250010	A63250011	60	45	60
6	A63260010	A63260011	60	45	60
7	A63270010	-	90	-	-
8	A63280010	A63280011	110	80	110
10	A63290010	-	150	115	-
12	A63292010	-	172	150	_
14	A63294010	_	275	230	-

How to Order

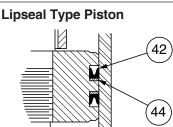
Individual seals contained in the kits are available separately; however, we recommend purchasing complete kits because of convenience and lower replacement cost. When ordering seal kits, give part number listed above. To be sure of exact replacement, give serial number of cylinder when ordering replacement kits or seals.

Symbol	Description
14	Gland cartridge
40	Gland wiperseal
41	Gland lipseal
42	Piston lipseal
43	Gland back-up washer
44	Piston back-up washer
45	Gland to head o-ring
47	End seal o-ring
48	Piston ring
62	Gland cartridge kit


Seal Kits for Fluorocarbon Seals

Material: Fluorocarbon

For operating temperature and fluid compatability, see Section C, pages 54 & 55. Gland and spanner wrenches are available to ease (rod) seal or gland cartridge


removal without disassembly of the cylinder. (For rod diameters over 2 1/2".)

For detailed seal replacement instructions see service bulletin SB0995-M1, M3 and M5.

Piston Seal Options

Ring Type Piston (as shown above) Supplied as standard on PL-2 series hydraulic cylinders.

Supplied as standard on PA-2 series air cylinders. Optional for PL-2 series hydraulic cylinders.

	PA-2 Cylin	ders Only		ders Only		
	Gland (Symbol 62) Cartridge Kits	Rod Seal Kits	Gland (Sym. 62) Cartridge Kits	Rod Seal Kits		
Rod Dia.	Contains Symbols 14, 40, 41, 43 & 45	Contains Symbols 40, 41, 43 & 45	Contains Symbols 14, 40, 41, 43 & 45	Contains Symbols 40, 41, 43 & 45	Gland Wrench	Spanner Wrench
1/2	A63220205	A63220405	A63220605	A63220805		
5/8	A63220208	A63220408	A63220408	A63220808		
1	A63220210	A63220410	A63220610	A63220810	Not	Not
1 3/8	A63220213	A63220413	A63220613	A63220813	Required	Required
1 3/4	A63220214	A63220414	A63220614	A63220814		
2	A63220220	A63220420	A63220620	A63220820		
2 1/2	A63220225	A63220425	A63220625	A63220825		
3	A63220230	A63220430	A63220630	A63220830	0695960000	0116770000
3 1/2	A63220235	A63220435	A63220635	A63220835	0695970000	0116770000
4	A63220240	A63220440	A63220640	A63220840	0695980000	0116780000
4 1/2	A63220245	A63220445	A63220645	A63220845	0838770000	0116780000
5	A63220250	A63220450	A63220650	A63220850	0695990000	0116780000
5 1/2	A63220255	A63220455	A63220655	A63220855	0696000000	0116780000

	Piston Seal Kits	Piston Seal Kits	Piston Ring Kits
	PA-2 Series	PL-2 Series	PL-2 Series
Bore Size	Contains 2 Each Symbols: 42, 44 & 47	Contains 2 Each Symbols: 42, 44 & 47	Contains 2 Each Symbols 47 & 4 Each Symbol 48
1	A63221006	A63221007	A63221008
1 1/2	A63221506	A63221507	A63221508
2	A63222006	A63222007	A63222008
2 1/2	A63222506	A63222507	A63222508
3 1/4	A63223206	A63223207	A63223208
4	A63224006	A63224007	A63224008
5	A63225006	A63225007	A63225008
6	A63226006	A63226007	A63226008
7	A63227006	-	_
8	A63228006	A63228007	A63228008
10	A63229006	-	_
12	A63229206	-	_
14	A63229406	_	_

	Cylinder Bo	ody Seal Kits		od Torque	
	PA-2 Series	PL-2 Series	Specifica PA-2 S		
Bore Size	Contains 2 Each Symbol 47	Contains 2 Each Symbol 47	Steel Cylinder Body	Brass Cylinder Body	PL-2 Series
1	A63221020	A63221020	2	1	2
1 1/2	A63221520	A63221520	5	3	5
2	A63222020	A63222020	11	6	11
2 1/2	A63222520	A63222520	11	6	11
3 1/4	A63223230	A63223230	25	18	25
4	A63224030	A63224030	25	18	25
5	A63225030	A63225030	60	45	60
6	A63226030	A63226030	60	45	60
7	A63227030	-	90	-	-
8	A63228030	A63228030	110	80	110
10	A63229030	-	150	115	-
12	A63229230	-	172	150	-
14	A63229430	-	275	230	-

How to Order

Individual seals contained in the kits are available separately; however, we recommend purchasing complete kits because of convenience and lower replacement cost. When ordering seal kits, give part number listed above. To be sure of exact replacement, give serial number of cylinder when ordering replacement kits or seals.

Schrader Bellows®

Hydraulic and Pneumatic Cylinder **Application Engineering Data** Operating Principles and Construction......Pages 50-51 **Theoretical Push and Pull Forces for** Hydraulic and Pneumatic Cylinders.....Pages 52, 96 Fluid Service – Industrial Cylinders **Operating Fluids and Temperature Range** Water Service Warranty Pre-Lubricated/Non-Lubricated Air CylindersPages 54-55 Pressure Ratings PA-2, PN, PL-2, PH-2 and PH-3 Series Cylinders.....Page 56 SHM Series Cylinders.....Page 101 **Mounting Information** PA-2, PL-2, PH-2 and PH-3 Series Cylinders.....Pages 57-60 SHM Series Cylinders.....Pages 94-95 Straight Line Force Transfer (Group 1) Page 57 Straight Line Force Transfer (Group 3) Page 58 Pivot Force Transfer (Group 2).....Page 59 Accessories.....Page 60 Port Data Straight Thread and International Ports.....Pages 61-62 Oversize NPTF, SAE Ports and Manifold Ports Pages 63-64 SHM Series Cylinders......Pages 102-103 **Rod End Data** Rod End Style 3 Minimum Stroke for PL-2, PH-2 and PH-3 Series......Page 53 Piston Rod End Threads, International Rod End Threads, Special Rod Ends, Special Assemblies, Single Acting Cylinders......Page 65 Stroke Data – Tie Rod Supports – Gland Drain Stroke Adjusters, Thrust Key Mountings, Gland Drain..... Pages 66-67 **Acceleration and Deceleration Data** PA-2, PL-2, PH-2 and PH-3 Series Cylinders.....Pages 83-88 Stop Tubing – Mounting Classes PA-2, PL-2, PH-2 and PH-3 Series Cylinders..... Pages 68-69 SHM Series Cylinders.....Pages 97-98 **Piston Rod Selection** PA-2, PL-2, PH-2 and PH-3 SeriesPages 70-75 Cushioning PH-2 and 7" & 8" Bore PH-3 SeriesPages 77-82 SHM Series Pages 99-101 Hydraulic Cylinder Port Sizes and Piston SpeedPages 84-85 Deceleration Force and Air Requirements for Air Cylinders......Page 87 Air Cylinder Cushion Ratings – Air RequirementsPages 88-90 **Modifications** Metallic Rod Wiper, Air Bleeds, Rod End Boots, Tandem Cylinders, Duplex CylindersPage 91 **Cylinder Weights** PA-2, PN, PL-2, PH-2 and PH-3 Series Cylinders.....Pages 92-93 Cylinder Safety Guide Pages 106-107

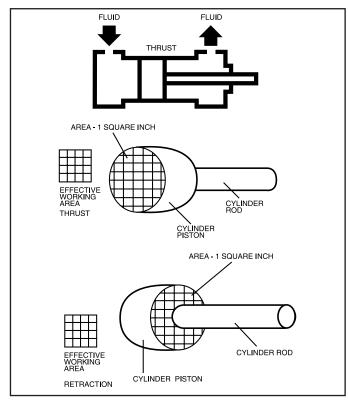
ſ

Cylinders are used in the majority of applications to convert fluid energy into straight line motion. For this reason, they are often called linear actuators.

Cylinders are manufactured in a variety of diameters, stroke lengths, and mounting styles. They may be classified, according to construction, into four types: tie-rod, threaded, welded, and flanged. Cylinders are also made using retaining rings.

Area =
$$\frac{\pi D^2}{4}$$
 or Area = .7854 x D²

When calculating force developed on the return stroke, pressure does not act on the rod area of the piston, therefore the rod area must be subtracted from the total piston area.


Basic Construction

The major components of a cylinder are the head, cap, tube tie rods, piston, piston rod, rod bearing and seals.

Cylinder Heads and Caps are usually made from rolled steel or cast iron. Some are also from aluminum or bronze.

Cylinder Tubes are usually brass, steel or aluminum. The inside, and sometimes the outside, is plated or anodized to improve wear characteristics and reduce corrosion.

Illustration B-28

Pistons vary in design and materials used. Most are made of cast iron, steel or aluminum. Several methods of attaching the piston to the rod are used. Cushions, are an available option on most cylinders and most often, can be added with no change in envelope dimensions.

Piston Rods are generally high strength steel, case-hardened, ground, polished and hard chrome plated for wear and corrosion resistance. Corrosive atmosphere conditions usually require rods of stainless steel, which may be chrome plated for wear resistance.

Rod Glands or Bearings are used on the head end of most industrial cylinders to support the piston rod as it travels back and forth. The gland also acts as a retainer for the rod packing and seals. Most are made of ductile iron or bronze and usually are removable without disassembling the entire cylinder.

The gland usually contains a piston rod wiper or scraper on the outboard side to remove dirt and contamination from the rod, and prevent foreign material from being drawn into the packings. A primary seal is used to seal the cylinder pressure.

Seals are generally made from Nitrile or fluorocarbon elastomers, polyurethane, leather or PTFE The Lipseal[™] shape is commonly used for both piston and piston rod seals. Generally, O-Rings are used for static applications such as head to tube, piston to rod, and head to gland. Cup or V-packings are used for sealing piston and piston rod. Piston rings are usually cast iron.

Tie-Rods are usually high tensile steel with either cut or rolled threads, prestressed during assembly. Prestressing with proper torque prevents separation of parts when subjected to pressure and reduces the need for locknuts, although locknuts are sometimes used.

Illustration B29

Fundamental Cylinders

Standard Double-Acting Cylinders

Power stroke is in both directions and is used in the majority of applications.

Single-Acting Cylinders

When thrust is needed in only one direction, a single-acting cylinder may be used. The inactive end is vented to atmosphere through a breather/filter for pneumatic applications, or vented to reservoir below the oil level in hydraulic application.

Double-Rod Cylinders

Used when equal displacement is needed on both sides of the piston, or when it is mechanically advantageous to couple a load to each end. The extra end can be used to mount cams for operating limit switches, etc.

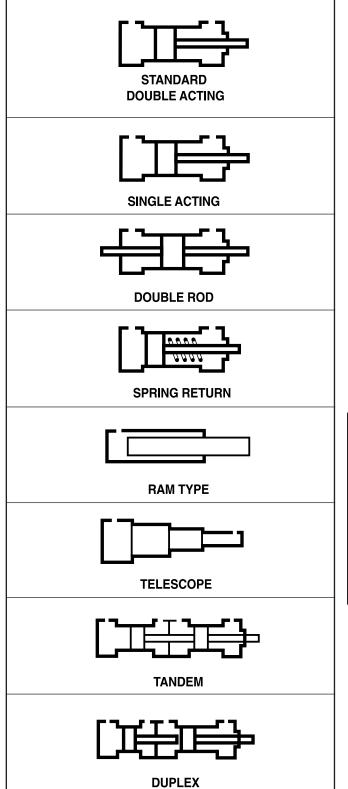
Spring Return, Single-Acting Cylinders

Usually limited to very small, short stroke cylinders used for holding and clamping. The length needed to contain the return spring makes them undesirable when a long stroke is needed.

Ram Type, Single-Acting Cylinders

Containing only one fluid chamber, this type of cylinder is usually mounted vertically. The weight of the load retracts the cylinder. They are sometimes know as "displacement cylinders", and are practical for long strokes.

Telescoping Cylinders


Available with up to 4 or 5 sleeves; collapsed length is shorter than standard cylinders. Available either single or double-acting, they are relatively expensive compared to standard cylinders.

Tandem Cylinders

A tandem cylinder is made up of two cylinders mounted in line with pistons connected by a common piston rod and rod seals installed between the cylinders to permit double acting operation of each. Tandem cylinders allow increased output force when mounting width or height are restricted.

Duplex Cylinders

A duplex cylinder is made up of two cylinders mounted in line with pistons not connected and with rod seals installed between the cylinders to permit double acting operation of each. Cylinders may be mounted with piston rod to piston (as shown) or back to back and are generally used to provide three position operation.

C

Theoretical Push and Pull Forces for Pneumatic and Hydraulic Cylinders

Push Force and Displacement

Cyl. Bore Size	Piston Area		Cylinder Push Stroke Force In Pounds At Various Pressures									Cu. Ft. Free Air At 80 psi Pressure, Required To	Displacement Per Inch Of
(Inches)	(Sq. In.)	25	50	65	80	100	250	500	1000	2000	3000	Move Max. Load 1 Inch	Stroke (Gallons)
1	.785	20	39	51	65	79	196	392	785	1570	2355	0.00293	0.00340
1 ¹ / ₂	1.767	44	88	115	142	177	443	885	1770	3540	5310	0.00659	0.00765
2	3.14	79	157	204	251	314	785	1570	3140	6280	9420	0.01171	0.0136
2 ¹ / ₂	4.91	123	245	319	393	491	1228	2455	4910	9820	14730	0.01830	0.0213
3 ¹ / ₄	8.30	208	415	540	664	830	2075	4150	8300	16600	24900	0.03093	0.0359
4	12.57	314	628	817	1006	1257	3143	6285	12570	25140	37710	0.04685	0.0544
5	19.64	491	982	1277	1571	1964	4910	9820	19640	39280	58920	0.07320	0.0850
6	28.27	707	1414	1838	2262	2827	7068	14135	28270	56540	84810	0.10541	0.1224
7	38.49	962	1924	2502	3079	3849	9623	19245	38490	76980	115470	0.14347	0.1666
8	50.27	1257	2513	3268	4022	5027	12568	25135	50270	100540	150810	0.18740	0.2176
10	78.54	1964	3927	5105	6283	7854	19635	39270	78540	157080	235620	0.29280	0.3400
12	113.10	2828	5655	7352	9048	11310	28275	56550	113100	226200	339300	0.42164	0.4896
14	153.94	3849	7697	10006	12315	15394	38485	76970	153940	307880	461820	0.57389	0.6664
16	201.06	5027	10053	13069	16085	20106	50265	100530	201060	402120	603180	0.74923	0.8704
18	254.47	6362	12724	16541	20358	25447	63618	127235	254470	508940	763410	0.94893	1.1016
20	314.16	7854	15708	20420	25133	31416	78540	157080	314160	628320	942480	1.17119	1.3600

Deductions for Pull Force and Displacement

Piston	Piston		Pisto	n Rod I	Diamete	er Force	e In Pou	inds At	Various	s Pressu	res	Cu. Ft. Free Air	Displacement
Rod Dia. (Inches)	Area (Sq. In.)	To determine Cylinder Pull Force or Displacement, deduct the following Force									At 80 psi Pressure, Required To Move Max. Load 1 Inch	Per Inch Of Stroke (Gallons)	
		25	50	65	80	100	250	500	1000	2000	3000		
1/2	.196	5	10	13	16	20	49	98	196	392	588	0.00073	0.0009
⁵ /8	.307	8	15	20	25	31	77	154	307	614	921	0.00114	0.0013
1	.785	20	39	51	65	79	196	392	785	1570	2355	0.00293	0.0034
1 ³ /8	1.49	37	75	97	119	149	373	745	1490	2980	4470	0.00554	0.0065
1 ³ / ₄	2.41	60	121	157	193	241	603	1205	2410	4820	7230	0.00897	0.0104
2	3.14	79	157	204	251	314	785	1570	3140	6280	9420	0.01171	0.0136
2 ¹ / ₂	4.91	123	245	319	393	491	1228	2455	4910	9820	14730	0.01830	0.0213
3	7.07	177	354	460	566	707	1767	3535	7070	14140	21210	0.02635	0.0306
3 ¹ / ₂	9.62	241	481	625	770	962	2405	4810	9620	19240	28860	0.03587	0.0416
4	12.57	314	628	817	1006	1257	3143	6285	12570	25140	37710	0.04685	0.0544
4 ¹ / ₂	15.90	398	795	1033	1272	1590	3975	7950	15900	31800	47708	0.05929	0.0688
5	19.64	491	982	1277	1571	1964	4910	9820	19640	39280	58920	0.07320	0.0850
5 ¹ /2	23.76	594	1188	1544	1901	2376	5940	11880	23760	47520	71280	0.08857	0.1028
7	38.49	962	1924	2502	3079	3849	9623	19245	38490	76980	115470	0.14347	0.1666
8	50.26	1257	2513	3267	4021	5026	12565	25130	50260	100520	150780	0.18747	0.2176
9	63.62	1591	3181	4135	5090	6362	15905	31810	63620	127240	190860	0.23722	0.2754
10	78.54	1964	3927	5105	6283	7854	19635	39270	78540	157080	235620	0.29280	0.3400

General Formula

The cylinder output forces are derived from the formula:

$$F = P \times A$$

- Where F = Force in pounds.
 - P = Pressure at the cylinder in pounds per square inch, gauge.
 - A = Effective area of cylinder piston in square inches.

Free Air refers to normal atmospheric conditions of the air at sea level (14.7 psi). Use above cu. ft. free air required data to compute CFM required from a compressor at 80 psi. Cu. ft. of free air required at other pressures can be calculated using formula below.

$$V_1 = \frac{(P_2 + 14.7) V_2}{14.7}$$

Where V_1 = Free air consumption per inch of stroke (cubic feet).

- V_2 = Cubic feet displaced per inch of stroke.
- P₂ = Gauge pressure required to move maximum load.

Rod End Style 3 Minimum Stroke

Sufficient clearance must exist between machining for female rod end style 3 and the threaded piston-to-rod connection. This clearance is required to maintain pressure envelope integrity and envelope ratings shown above.

PH-2 & PH-3 Series

Bore Ø	Rod Ø	Minimum Stroke
1.50 - 4.00	All	None
5.00	2.000	None
	2.500	1.00
	3.000	1.38
	3.500	1.63
6.00	2.500	None
	3.000	1.38
	3.500	1.38
	4.000	2.00
7.00	3.000	1.25
	3.500	1.50
	4.000	1.50
	5.000	3.13
8.00	3.500	1.50
	4.000	1.50
	5.000	2.88
	5.500	3.63

Bore Ø	Rod Ø	Minimum Stroke
10.00	4.500	1.13
	5.000	1.38
	5.500	2.00
	7.000	3.13
12.00	5.500	1.25
	7.000	2.38
	8.000	1.13
14.00	7.000	2.00
	8.000	2.75
	10.000	4.25
16.00	8.000	1.75
	9.000	2.50
	10.000	3.25
18.00	9.000	1.50
	10.000	2.25
20.00	10.000	1.25

To maintain the required clearance, a minimum stroke is required

minimum stroke requirements. Contact the factory when a style 3

rod end with a stroke shorter than shown in the table is required.

for some bore and rod combinations. See the table below for

PL-2 Series

Bore Ø	Rod Ø	Minimum Stroke
1.00 - 4.00	All	None
5.00	2.000	None
	2.500	1.000
	3.000	1.375
	3.500	1.625
6.00	2.500	None
	3.000	1.375
	3.500	1.375
	4.000	2.000
8.00	3.500	1.500
	4.000	1.500
	5.000	2.875
	5.500	3.625

Operating Fluids and Temperature Range

Cylinders are designed for use with pressurized air, hydraulic oil and fire resistant fluids, in some cases special seals are required.

Standard Seals (Class 1)

Standard seals are what is normally provided in a cylinder unless otherwise specified. They are intended for use with fluids such as: air, nitrogen, mineral base hydraulic oil or MIL-H-5606 within the temperature range of -10° F (-23° C) to $+165^{\circ}$ F ($+74^{\circ}$ C). Generally they are nitrile except for piston rod seals in hydraulic cylinders. However the individual seals may be nitrile (Buna-N) enhanced polyurethane, polymyte, PTFE or filled PTFE

Water Base Fluid Seals (Class 2)

Generally these seals are intended for use with water base fluids within the temperature of -10° F (-23° C) to $+165^{\circ}$ F ($+74^{\circ}$ C) except for High Water Content Fluids (HWCF) in which case HWCF seals should be used. Typical water base fluids are: Water, Water-Glycol, Water-in Emulsion, Houghto-Safe 27, 620, 5040, Mobil Pyrogard D, Shell Irus 905, Ucon Hydrolube J-4. These seals are nitrile. Lipseal will have polymyte or PTFE back-up washer when required. O-rings will have nitrile back-up washers when required.

Ethylene Propylene (EPR) Seals (Class 3)

These seals are intended for use with some Phosphate Ester Fluids between the temperatures of -10° F (-23° C) to $+130^{\circ}$ F ($+54^{\circ}$ C). Typical fluids compatible with EPR seals are Skydrol 500 and 700. EPR are Ethylene Propylene. Lipseals will have a PTFE back-up washer when required. O-rings will have EPR back-up washers when required. <u>Note</u>: EPR seals <u>are not</u> compatible with mineral base hydraulic oil or greases. Even limited exposure to these fluids will cause severe swelling. PTFE back-up washer may not be suitable when used in a radiation environment.

Low Temperature Nitrile Seals (Class 4)

Low temperature nitrile seals are intended for low temperature service with the same type of fluids as used with standard seals within the temperature range of -50° F (-46° C) to $+150^{\circ}$ F ($+66^{\circ}$ C). Lipseals will have leather, polymyte or PTFE back-up washers when required. O-rings will have nitrile back-up washers when required.

Fluorocarbon Seals (Class 5)

Fluorocarbon seals are intended for elevated temperature service or for some Phosphate Ester Fluids such as Houghto-Safe 1010, 1055, 1120; Fyrquel 150, 220, 300, 350; Mobile Pyrogard 42, 43, 53, and 55. Note: In addition, fluorocarbon seals can be used with fluids listed below under standard service. However, they are not compatible with Phosphate Ester Fluids such as Skydrols. Fluorocarbon seals can operate with a temperature range of $-10^{\circ}F$ ($-23^{\circ}C$) to $+250^{\circ}F$ ($+121^{\circ}C$). Fluorocarbon seals may be operated to $+400^{\circ}F$ ($+204^{\circ}C$) with limited service life. For temperatures above $+250^{\circ}F$ ($+121^{\circ}C$) the cylinder must be manufactured with non-studded piston rod and thread and a pinned piston to rod connection. Fluorocarbon Lipseals will have PTFE back-up washers when required. O-rings will have fluorocarbon back-up when required.

A Warning

The piston rod stud and the piston rod to piston threaded connections are secured with an anaerobic adhesive which is temperature sensitive. Cylinders specified with fluorocarbon seals are assembled with anaerobic adhesive having a maximum temperature rating of +250°F (+121°C). Cylinders specified with all other seal compounds are assembled with anaerobic adhesive having a maximum operating temperature rating +165°F (+74°C). These temperature limitations are necessary to prevent the possible loosening of the threaded connections. Cylinders originally manufactured with standard seals (Nitrile) that will be exposed to ambient temperature service. Contact the factory immediately and arrange for the piston to rod and the stud to piston rod connections to be properly re-assembled to withstand the higher temperature service.

HWCF Seals (Class 6)

These seals are intended for High Water Content Fluids (HWCF) such as Houghton Hydrolubric 120B and Sonsol Lubrizol within the temperature range of +40°F (+4°C) to +120°F (+49°C). HWCF seals are special nitrile compound dynamic seals. Lipseals will have PTFE and or polymyte back-up washers when required. O-rings will have nitrile back-up washers when required. Because of the viscosity of these fluids, cylinders specified with HWCF seals, will also be modified to have lip seal piston seals and straight cushions.

Energized PTFE Seals (Class 8 Seals)

Class 8 seals consist of PTFE piston lipseals, rod seal and wiperseal. Piston seals have an internal stainless steel spring to energize both the static and dynamic sealing lips. They are intended for high temperature applications, to 400° F (204° C), where longer seal life and improved high temperature sealing performance is required. Body and gland o-ring seals will be fluorocarbon. Fluid resistance is comparable to Class 5. Cylinders incorporating Class 8 Seals will not have studded piston rods.

Hi-Load Seals

Hi-load seals consist of one or two filled PTFE dynamic piston seals with an elastomer expander underneath. Hi-load piston arrangement normally consists of a wear ring on each end of the piston with the seals in the middle. These types of seals are virtually leak free seals under static conditions and can tolerate high pressure. The wear rings on the piston can also tolerate high side loads. The dynamic portion of the seal is bronze filled PTFE and compatible with all conditions and fluids listed on this page. However, carbon filled PTFE will provide better seal life when used with HWCF fluids. A nitrile expander will be provided unless EPR or fluorocarbon seals are specified. In those cases the expander will be of EPR or fluorocarbon respectively. Note: It may be necessary to cycle the piston seals 40 or 50 times before achieving leakage free performance.

Lipseal Pistons

Under most conditions lipseals provide the best all around service for pneumatic applications. Lipseals with a back-up washer are often used for hydraulic applications when virtually zero static leakage is required. Lipseals will function properly in these applications when used in conjunction with moderate hydraulic pressures. A high load piston option is recommended when operating at high pressures and especially with large bore hydraulic cylinders.

Low Friction Hydraulic Seals

Low Friction hydraulic seals are available as an option for both piston and rod seals for PH-2, PH-3 and PL-2 Series cylinders. They are sometimes used when a cylinder is controlled by servo or proportional valve. The seal assembly itself is a two piece assembly consisting of a filled PTFE dynamic seal with an elastomer expander. A piston seal assembly consists of one seal assembly in the middle of the piston with a filled PTFE wear ring on each side of the piston. The piston rod seal assembly consists of two seal assembled and an elastomer wiper seal. The filled PTFE seals are compatible with the fluids listed on this page and provide virtually leak free sealing. The expanders and rod wiper will be nitrile unless EPR or fluorocarbon seals are specified. In those cases the expanders and wiper will be EPR and fluorocarbon respectively. When specifying low friction seals specify if piston, piston rod seals or both are required. Note: It may be necessary to cycle these seals 40 or 50 times before achieving leakage free performance.

Cast Iron Piston Rings

Cast iron rings are the standard piston seals for PH-2 and PL-2 Series cylinders. They offer the widest operating conditions by tolerating high operating pressures, wide temperature range and are compatible with most fluids. The only drawback of cast iron rings is that they allow a small amount of leakage. The leakage for a 4" bore cylinder, operating at 2000 psi, with mineral base hydraulic fluid will be less than 10in³/min. Leakage will increase as pressure, bore size and viscosity of the operating hydraulic fluid increases. For these reasons cast iron rings are not recommended when using water or (HWCF) fluids.

Water Service

For pressures up to 250 psi PA-2 and PL-2 series cylinders can be modified to make them more suitable for use with water as the operating medium. The modifications include chrome-plated cylinder bore; cadmium-plated head, cap and piston; chromeplated 17-4 stainless steel piston rod; chrome plated cushion sleeve or cushion spear.

Modified cylinders may also be used for higher operating pressures, up to 2000 psi, depending on bore size. See pressure rating for Hydraulic Cylinders. PL-2, PH-2 and PH-3 Series hydraulic cylinders can also be modified for water operation and supplied with chrome-plated cylinder bore; cadmium-plated head, cap and piston; chrome-plated precipitation hardened stainless steel piston rod, chrome-plated cushion sleeve or cushion spear. When high water base fluids are the operating medium, hydraulic cylinders are usually supplied with high water base rod wiper and seals. Water and high water base fluid operated cylinders are best used on short stroke applications or where high pressure is applied only to clamp the load.

Warranty

Schrader Bellows will warrant cylinders modified for water or high water content fluid service to be free of defects in materials or workmanship, but cannot accept responsibility to premature failure due to excessive wear due to lack of lubricity or where failure is caused by corrosion, electrolysis or mineral deposits within the cylinder.

Pre-Lubricated Air Cylinders

Schrader Bellows air cylinders are factory pre-lubricated with Lube-A-Cyl applied to seals, piston, cylinder bore, piston rod and gland surfaces, provides for normal cylinder operations with lubricated air.

Non-Lubricated Air Cylinders

For heavier duty operation, Series PN is recommended for nonlubricated air service. Series PN includes an innovative special composite material wick and ring reservoir assembly in each seal groove to retain the extreme pressure lubricant applied at time of assembly. This lubricant coats the cylinder bore and piston rod and mating surfaces.

Class No.	Typical Fluids	Temperature Range
1 (Standard) (Nitrile Polyurethane)	Air, Nitrogen Hydraulic Oil, Mil-H-5606 Oil	-10°F (-23°C) to +165°F (+74°C)
2 Optional Water Base Fluid Seal	Water, Water-Glycol, HWCF — See Class 6 below. Water-in-Oil Emulsion Houghto-Safe, 271, 620, 5040 Mobil Pyrogard D, Shell Irus 905 Ucon Hydrolube J-4	-10°F (-23°C) to +165°F (+74°C)
3 Special (EPR) (At extra cost)	Some Phosphate Ester Fluids Skydrol 500, 7000	-10°F (-23°C) to +130°F (+54°C)
Note: (EPR) seals are not compatible with H	ydraulic Oil	
4 Special (Nitrile) (At extra cost)	Low Temperature Air or Hydraulic Oil	-50°F (-46°C) to +150°F (+66°C)
5 Optional (At extra cost) (Fluorocarbon Seals) Note: Fluorocarbon seals are not suitable for	High Temperature Houghto-Safe 1010, 1055, 1120 Fyrquel 150, 220, 300, 550 Mobil Pyrogard 42,43,53,55 use with Skydrol fluid, but can be used with hydraulic	See paragraph on previous page for recommended temperature range of fluorocarbon seals.
oil if desired		
6 Optional (HWCF) (At extra cost)	Houghton, Hydrolubric 120B Sonsol Lubrizol, for other HWCF — consult factory.	+40°F (+4°C) to +120°F (+49°C)
8 Optional (At extra cost) Spring Loaded PTFE	See Class 5 Seals	-15°F (-26°C) to 400°F (204°C)

H

Application Data

The proper application of a fluid power cylinder requires consideration of the operating pressure, the fluid medium, the mounting style, the length of stroke, the type of piston rod connection to the load, thrust or tension loading on the rod,

Pneumatic Cylinders

Standard operating fluid — filtered air which is free of moisture. PA-2 and PN Series cylinders are recommended for maximum 250 psi heavy duty service.

Pressure Ratings Fluid Medium Air

Bore Size	Standard Piston Rod	Series PA-2, PN
(Inches)	Diameters (Inches)	Max. Heavy-Duty Operating Pressure (psi)
1	1/2	250
1 ¹ /2	⁵ /8	250
2	⁵ /8	250
2 ¹ / ₂	⁵ /8	250
3 ¹ / ₄	1	250
4	1	250
5	1	250
6	1 ³ /8	250
8	1 ³ /8	250
10	1 ³ / ₄	250
12	2	250
14	2 ¹ / ₂	250

Hydraulic Cylinders (Heavy duty)

Standard operating fluid – clean, filtered hydraulic oil. Pressure ratings for heavy duty hydraulic cylinders are shown in the following table:

Pressure Ratings

PH-2 and PH-3 Series hydraulic cylinders are recommended for pressures to 3000 psi for heavy-duty service with hydraulic oil. The 4:1 design factor ratings shown are based on tensile strength of material and are for standard rod dia. only. The rating is conservative for continuous severe applications. Design factors at other pressures can be calculated from this rating. In addition, mounting styles, stroke, etc., should be considered because of the limiting effect they may have on these ratings.

Maximum Pressure Ratings

Bore Size (Inches)	Rod Ø (Inches)	4:1* Design Factor (Tensile) (psi)	Heavy-Duty Service (psi)
1 ¹ / ₂	⁵ /8	2530	3000
2	1	2950	3000
2 ¹ / ₂	1	2340	3000
3 ¹ / ₄	1 ³ /8	2250	3000
4	1 ³ / ₄	2130	3000
5	2	2170	3000
6	2 ¹ / ₂	2270	3000
7	3	2030	3000
8	3 ¹ / ₂	2040	3000
10	4 1/2	2720	3000
12	5 1/2	2580	3000
14	7	2320	3000
16	8	2750	3000
18	9	2900	3000
20	10	2640	3000

mounting attitude, the speed of stroke, and how the load in motion will be stopped. Information given here provides pressure rating data for pneumatic and hydraulic cylinders.

Hydraulic Cylinders (Medium duty)

Pressure ratings for PL-2 Series hydraulic cylinders vary by bore size and rod size as shown in table below. For pressures higher than those indicated, PH-2 Series heavy duty cylinders should be used.

Bore Size	Rod Diameters	Pressure Rating At 4:1 Design* Factor (On Tensile)
1	1/2	1900
I	⁵ /8	1900
1 ¹ /2	⁵ /8	2000
1 /2	1	2300
	5/8	1100
2	1	2000
	1 ³ /8	2000
	5/8	700
2 ¹ / ₂	1	1400
	1 ³ /8	1400
	1 ³ /4	1400
	1 1 ³ /8	1300
3 ¹ / ₄		1300
	13/4	1300
	2	1300
	1 ³ /8	900
	<u>1³/4</u>	900
4	2	900
	2 2 ¹ /2	900 900
	1	
	1 ³ /8	600 950
	1 ³ /4	950
5	2	950
Э	2 ¹ /2	950
	3	950
	<u>31/2</u>	950
	1 ³ /8	700
	1 ³ / ₄	700
	2	700
6	21/2	700
J	3	700
	<u> </u>	700
	4	700
	4 1 ³ /8	400
	1 /8 1 ³ /4	650
	2	650
	2 ¹ /2	650
	3	650
8	31/2	650
	4	650
	41/2	650
	5	650
	51/2	650
	J 12	000

*Applies to all mountings except MF1.

*Applies to all mountings except MF1.

Single rod type, fluid power cylinders are commonly available in 16 standard mounting styles ranging from head or cap end mounts to intermediate mounts. Many mounting styles are also available in double rod type cylinders. Refer to ANSI/(NFPA) T3.6.7R3-2009 Specifications and Mounting Dimension Standards or Schrader Bellows air or hydraulic cylinder catalogs for detailed description.

Standard mounting styles for fluid power cylinders fall into three basic groups. The groups can be described as follows.

Group 1 – Straight line force transfer with fixed mounts which absorb force on cylinder centerline.

Group 3 – Straight line force transfer with fixed mounts which do not absorb force on cylinder centerline.

Group 2 – Pivot force transfer with pivot mounts which absorb force on cylinder centerline and permit cylinder to change alignment in one plane.

Cylinder mounting directly affects the maximum pressure at which the fluid power cylinder can be used, and proper selection of mounting style will have a bearing on cylinder operation and service life. Whether the cylinder is used in thrust or tension, its stroke length, piston rod diameter and the method of connection to load also must be considered when selecting a mounting style.

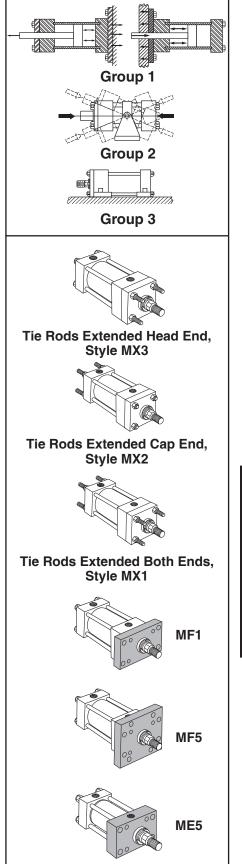
Cylinders are offered for use with air pressure up to 250 psi; medium-duty hydraulic, depending on bore size, up to 2200 psi; and heavy-duty hydraulic service of up to 3000 psi. The industrial tie rod types, known as NFPA cylinders, with square steel heads and caps, plus steel mountings lend themselves to standardized mounts which are similar in appearance for both air and hydraulic cylinders.

Because of the all steel construction, Schrader Bellows air cylinders have a design factor of better than 4:1, and the various mounts can be used without limitations up to the cylinder manufacturer's maximum rated pressure. Medium-duty and heavy-duty hydraulic cylinders, in some mounting styles, may not be used at full rated pressure, depending on mounting style, stroke length and thrust or tension loading, as discussed in the following:

Straight Line Force Transfer (Group 1)

Schrade

Bellows


Cylinders with fixed mounts (Group 1) which absorb the force on centerline are considered the best for straight line force transfer. Tie Rods Extended, Flange or Centerline Lug mounts are symmetrical and allow the thrust or tension forces of the piston rod to be distributed uniformly about the cylinder centerline. Mounting bolts are subjected to simple tension or simple shear without compound forces, and when properly installed damaging cylinder bearing sideloading is kept to a minimum.

Tie Rods Extended are considered to be of the centerline mount type. The cylinder tie rods are designed to withstand maximum rated internal pressure and can be extended and used to mount the cylinder at cap or head end. This often overlooked mounting will securely support the cylinder when bolted to the panel or machine member to which the cylinder is mounted. The torque value for the mounting nuts should be the same as the tie rod nut torque recommended by the cylinder manufacturer. Cylinders are available with tie rod extended both ends. In such applications one end is used for mounting and the opposite end to support the cylinder or to attach other machine components.

Tie rod mount cylinders may be used to provide thrust or tension forces at full rated pressures.

Tie Rods Extended Head End (Style MX3), Cap End (Style MX2) or Extended Both Ends (Style MX1) are readily available and fully dimensioned in Schrader Bellows cylinder product catalogs.

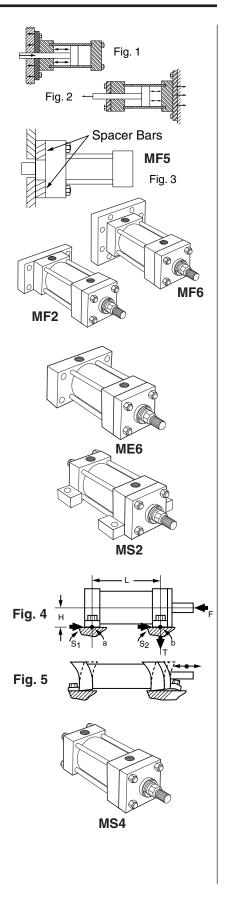
Flange Mount cylinders are also considered to be centerline mount type and thus are among the best mounts for use on straight line force transfer applications. The machine designer has a choice of three mounting styles at each end, such as Head Rectangular Flange (Style MF1), Head Square Flange (Style MF5), Head Rectangular (Style ME5), Cap Rectangular Flange (Style MF2), Cap Square Flange (Style MF6), and Cap Rectangular (Style ME6). Selection of a flange mounting style depends, in part, upon whether the major force applied to the load will result in compression (push) or tension (pull) stresses of the cylinder piston rod. Cap end mounting styles are recommended for thrust loads (push), while head end mounting styles are recommended where the major load puts the piston rod in tension (pull).

57 www.schraderbellows.com Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois Flange mounts are best used when end face is mounted against the machine support member. (Fig. 1) This is especially true where Head Rectangular Flange type (Style MF1) is used with major load in tension. In this mode, the flange is not subjected to flexure or bending stresses, nor are the mounting bolts stressed to unusually high levels. The use of Head Rectangular Flange (Style MF1) mount with major load in compression (see Fig. 2) is not recommended except on reduced pressure systems. The use of Style MF1 mount in compression subjects the flange to bending and the mounting bolts to tension stresses, which could result in early fatigue failure. For maximum allowable pressure with Style MF1 Head Rectangular Mount used for compression (push) or rear face of flange mounted, see pressure rating in product catalogs for medium- or heavy-duty hydraulic cylinders. For applications where push forces require full rated system pressure, Head Square Flange (Style MF5) or Head Rectangular (Style ME5) mounts are recommended. The best head style mounting for either push or pull applications at full rated pressure is Style ME5.

Style ME5 mount has the same mounting hole pattern and rectangular dimensions as the Style MF1 mount. To substitute the Head Rectangular Style ME5 mount for the Head Rectangular Flange, Style MF1 mount, it is necessary to use spacers to fill in the cataloged "F" dimension previously occupied by the "MF1" flange. The spacers are installed as shown in Fig. 3.

Cap flange mounts are also best used when end face is mounted against the machine support member. The use of Cap Rectangular Flange mount, Style MF2, is not recommended on applications where the major load is in tension (pull) except at reduced pressure. For maximum allowable pressure with Cap Rectangular Flange, Style MF2, used in tension application (pull) or front of flange mounted, see maximum pressure rating in product catalogs for medium- and heavy-duty hydraulic cylinders.

For applications where pull forces involved require full rated system pressure, Cap Square Flange, Style MF6, or Cap Rectangular, Style ME6, mounts are recommended. The best cap style mounting for either push or pull applications at full rated pressure is the Cap Rectangular Style ME6.


The Style ME6 mount has the same mounting hole pattern and rectangular dimensions as the Style MF2 mount. To substitute the Style ME6 for Style MF2, it is necessary to use spacers or order a cylinder with piston rod extension to make up for the cataloged "F" dimension previously occupied by the "MF2" flange.

Straight Line Force Transfer (Group 3)

Side Mount cylinders are considered to be fixed mounts which do not absorb force on their centerline. Cylinders of this group have mounting lugs connected to the ends, and one style has side tapped holes for flush mounting. The plane of their mounting surfaces is not through the centerline of the cylinder, and for this reason side mounted cylinders produce a turning moment as the cylinder applies force to the load. (Fig. 4) This turning moment tends to rotate the cylinder about its mounting bolts. If the cylinder is not well secured to the machine member on which it is mounted or the load is not well-guided, this turning moment results in side load applied to rod gland and piston bearings. To avoid this problem, side mount cylinders should be specified with a stroke length at least equal to the bore size.

Shorter stroke, large bore cylinders tend to sway on their mountings when subjected to heavy loads, especially side end lug or side and angle mounts. (Fig. 5)

Side mount cylinders are available in two mounting styles; Side Lug (Style MS2) & Side Tapped (Style MS4). Of these, the side lug mount is the most popular and reliable, since the mounting lugs are welded to head and cap to form an integral unit at each end. Side tapped mount is the choice when cylinders must be mounted side by side at minimum center-to-center distance.

Schrader Bellows® Consideration should also be given to design of the machine frame used to support cylinders non-centerline mount, since stronger members are often required to resist bending moments. (See Fig. 6)

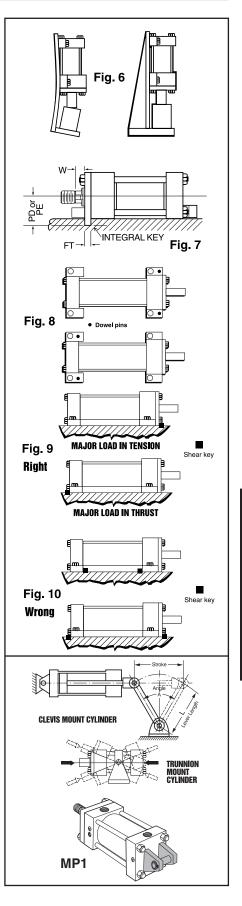
Side mount cylinders depend wholly on the friction of their mounting surfaces in contact with the machine member to absorb the force produced. Thus the torque applied to the mounting bolts is an important consideration. Since the mounting bolts are the same diameter as the tie rods for a given cylinder, it is recommended that the torque applied to the mounting bolts be the same as the tie rod torque recommended by the cylinder manufacturer for the given bore size.

For heavy loads or high shock conditions, side mounted cylinders should be held in place to prevent shifting by keying or pinning. A shear key, consisting of a plate extending from side of cylinder, can be supplied on most cylinders. (Fig. 7) This method may be used where a keyway can be milled into a machine member. It serves to take up shear loads and also provides accurate alignment of the cylinder.

Side lug mounts are designed so as to allow dowel pins to be used to pin the cylinder to the machine member. Pins, when used, are installed on both sides of the cylinder but not at both ends. (See Fig. 8)

The use of a separate shear key is fairly common. It should be placed at the proper end of the cylinder to absorb the major load. (See Fig. 9)

Side mount cylinders should not be pinned or keyed at both ends. Changes in temperature and pressure under normal operating conditions cause the cylinder to increase (or decrease) in length from its installed length and therefore must be free to expand and contract. If pinned or keyed at both ends, the advantages of cylinder elasticity in absorbing high shock loads will be lost. (Fig. 10)


If high shock loads are the major consideration, the cylinder should be mounted and pins or shear key so located as to take full advantage of the cylinder's inherent elasticity. For major shock load in tension, locate key at rear face of head or pin the head in place. For major shock load in thrust, pin cap in place or locate key at front face of cap.

Pivot Force Transfer (Group 2)

Cylinders with pivot mounts which absorb force on centerline should be used on applications where the machine member to be moved travels in a curved path. There are two basic ways to mount a cylinder so that it will pivot during the work cycle: clevis or trunnion mounts, with variations of each. Pivot mount cylinders are available in Cap Fixed Clevis (Style MP1), Cap Spherical Bearing (Style MP3), Head Trunnion (Style MT1), Cap Trunnion (Style MT2), and Intermediate Fixed Trunnion (Style MT4).

Pivot mount cylinders can be used on tension (pull) or thrust (push) applications at full rated pressure, except long stroke thrust cylinders are limited by piston rod column strength. See Piston Rod Selection Chart.

Clevis or single ear mounts are usually an integral part of the cylinder cap and provide a single pivot point for mounting the cylinder. A pivot pin of proper length and of sufficient diameter to withstand the maximum shear load developed by the cylinder at rated operating pressure is included as a part of the clevis mount style. The Fixed Clevis mount, Style MP1, is the most popular of the pivot force transfer types and is used on applications where the piston rod end travels in a curved path in one plane. It can be used vertically or horizontally or any angle in between. On long stroke push applications it may be necessary to use a larger diameter piston rod to prevent buckling or stop tube to minimize side loading due to "jackknife" action of cylinder in extended position. Fixed clevis mount cylinders will not function well if the curved path of piston rod travel is other than one plane. Such an application results in misalignment and causes the gland and piston bearing surfaces to be subjected to unnecessary side loading. For applications where the piston rod will travel in a path not more than 3° either side of the true plane motion, a cap spherical bearing mount is recommended. A spherical bearing rod eye should be used at rod end. Most spherical bearing mounts have limited pressure ratings. Consult cylinder manufacturer's product catalog.

C

Cap detachable clevis mounts are usually not available in heavy-duty hydraulic cylinders. They are used more for air or medium hydraulic service. Cap detachable clevis mounts are longer, centerline of pivot pin to shoulder of piston rod, than fixed clevis mount in any given bore size. They are most often specified to avoid port relocation charges. Application parameters are the same as described for fixed clevis mounting.

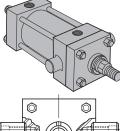
Trunnion mount cylinders are a second type of pivot mounts used on applications where the piston rod travels in a curved path in one plane. Three styles are available – Head Trunnion (Style MT1), Cap Trunnion (Style MT2) and Intermediate Fixed Trunnion (Style MT4). Trunnion pins are designed for shear loads only and should not be subjected to bending stresses. Pillow blocks, rigidly mounted with bearings at least as long as the trunnion pins, should be used to minimize bending stresses. The support bearings should be mounted as close to the head, cap or intermediate trunnion shoulder faces as possible.

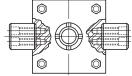
Cap end trunnion mounts are used on cylinder applications similar to fixed clevis mounts, and the same application data applies.

Head trunnion mount cylinders can usually be specified with smaller diameter piston rods than cylinders with pivot point at cap end or at an intermediate position. This is evident in data shown in piston rod selection chart. On head end trunnion mount, long stroke, cylinder applications consideration should be given to the overhanging weight at cap end of cylinder. To keep trunnion bearing loading within limits, stroke lengths should be not more than 5 times the bore size. If cylinder stroke is greater than 5 times the bore size and piston speed exceeds 35 ft/minute, consult factory.

Intermediate fixed trunnion mount is the best of the trunnion mount types. The trunnion can be located so as to balance the weight of the cylinder, or it can be located at any point between the head or cap to suit the application. It is of fixed design, and the location of the trunnion must be specified (XI) dimension) at time of order. The location cannot be easily changed once manufactured.

Thrust exerted by a pivot transfer cylinder working at an angle is proportional to the angle of the lever arm which it operates. In Fig. 12 that vector force, T, which is at right angle to the lever axis, is effective for turning the lever. The value of T varies with the acute angle A between cylinder centerline and lever axes. To calculate effective thrust T, multiply cylinder thrust by the power factor shown in table below.

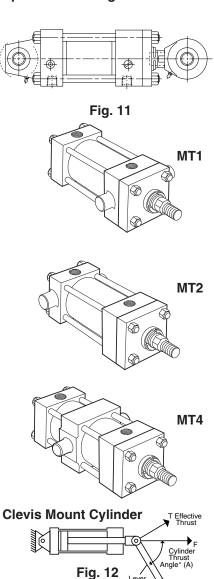

Accessories


Rod clevises or rod knuckles are available for use with either fixed or pivot mount cylinders. Such accessories are usually specified with pivot mount cylinders and are used with pivot pin centerline in same axis as pivot pin centerline on cylinder. Pivot pins for accessories must be ordered separately.

Pin size of rod clevis or rod knuckle should be at least equal in diameter to the pin diameter of the cap fixed clevis pin for the cylinder bore size specified. Larger accessories are more costly and usually result in a mis-match of pin diameters, especially when used with oversize piston rods.

Removable Trunnion Pins

Removable trunnion pins are a convenience when machine structures or confined space prohibit the use of separate pillow blocks situated close to the cylinder sides. Schrader Bellows offers a removable pin design in 1-1/2" through 8" bores sizes. (See following table for recommended maximum operating pressure.) Mounting pin diameters and lengths are identical to those in Mounting Styles MT1 and MT2 for any given bore size. These removable trunnion pins can be provided on the cap end of Series "PA-2" cylinders with any rod diameter. They can also be provided on the head end of cylinders with standard rods.

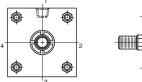


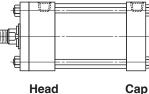
Pressure Ratings – Removable Trunnion Pin Mounting

Bore Size	1"	1 1/2"	2"	2 1/2"	3 1/4"	4"	5"	6"	8"
Std. Pressure Rating (psi)	-	250	250	250	250	250	150	200	125
Extreme Pressure Rating	-	450	400	275	375	250	150	200	125
Hydraulic Rating (psi)	-	750	700	450	625	400	250	325	200

Power Factor Table

Angle A Degrees	Pwr. Factor (SIN A)	Angle A Degrees	Pwr. Factor (SIN A)
5	0.087	50	0.766
10	0.174	55	0.819
15	0.259	60	0.867
20	0.342	65	0.906
25	0.423	70	0.940
30	0.500	75	0.966
35	0.573	80	0.985
40	0.643	85	0.996
45	0.707	90	1.000




Ports

Schrader Bellows hydraulic and pneumatic cylinders can be supplied with SAE straight O-ring ports or NPTF pipe thread ports. For the type of port recommended and port size, see respective product catalogs. If specified on your order, extra ports can be provided on the sides of heads or caps that are not occupied by mountings or cushion valve on all cylinders.

Standard port location is position 1 as shown on line drawings in product catalog and Figure 1 below. Cushion adjustment needle and check valves are at positions 2 and 4 (or 3), depending on mounting style. Heads or caps which do not have an integral mounting can be rotated and assembled with ports at 90° or 180° from standard position. Mounting styles on which head or cap can be rotated at no extra charge are shown in Table A below. To order, specify by position number. In such assemblies the cushion adjustment needle and check valve rotate accordingly, since their relationship with port position does not change.

Figure 1

Head (Rod) End

Table A

	Port Position Available				
Mounting Style	Head End	Cap End			
MX0, MX1, MX2, MX3, MF2, MF5, MF6 MT4	1, 2, 3 or 4	1, 2, 3 or 4			
ME6, MP1, MT2	1,2, 3 or 4	1 or 3			
MF1, MT1	1 or 3	1, 2, 3 or 4			
MS2, MS4	1	1			

Applies to PL-2, PH-2, PH-3 Series.

Available Ports for PH-2, PH-3 Series Cylinders

	SAE	NPTF	BSPP	SAE 4-Bolt	BSPT	Metric	ISO-6149-1
Bore	Standard	Pipe Thread	Parallel Thread	Flange Nom. Size	Taper Thread	Straight Thread	Metric Straight Thread
1 1/2	#10	1/2	1/2	N/A	1/2	M22 x 1.5	M22 x 1.5
2	#10	1/2	1/2	N/A	1/2	M22 x 1.5	M22 x 1.5
2 1/2	#10	1/2	1/2	1/2	1/2	M22 x 1.5	M22 x 1.5
3 1/4	#12	3/4	3/4	3/4	3/4	M27 x 2	M27 x 2
4	#12	3/4	3/4	3/4	3/4	M27 x 2	M27 x 2
5	#12	3/4	3/4	3/4	3/4	M27 x 2	M27 x 2
6	#16	1	1	1	1	M33 x 2	M33 x 2
7	#20	1 1/4	1 1/4	1 1/4	1 1/4	M42 x 2	M42 x 2
8	#24	1 1/2	1 1/2	1 1/2	1 1/2	M48 x 2	M48 x 2

Available Ports for PL-2 Series Cylinders

Bore	SAE Standard	NPTF Pipe Thread	BSPP Parallel Thread	BSPT Taper Thread	Metric Straight Thread	ISO-6149-1 Metric Straight Thread
1	#6	1/4	1/4	1/4	M14 x 1.5	M14x 1.5*
1 1/2	#6	3/8	3/8	3/8	M14 x 1.5	M14 x 1.5*
2	#6	3/8	3/8	3/8	M14 x 1.5	M14 x 1.5
2 1/2	#6	3/8	3/8	3/8	M14 x 1.5	M14 x 1.5
3/4	#10	3/8	3/8	3/8	M22 x 1.5	M22 x 1.5
4	#10	1/2	1/2	1/2	M22 x 1.5	M22 x 1.5
5	#10	1/2	1/2	1/2	M22 x 1.5	M22 x 1.5
6	#12	3/4	3/4	3/4	M26 x 1.5	M27 x 2
8	#12	3/4	3/4	3/4	M26 x 1.5	M27 x 2

*Not available on maximum oversize rods

Cylinder Port Options

SAE Straight Thread O-Ring Port. Recommended for most hydraulic applications.

Conventional NPTF Ports (Dry-Seal Pipe Threads). Recommended for pneumatic applications only.

BSPP Port (British Parallel Thread). ISO 228 port commonly used in Europe.

SAE Flange Ports Code 61 (3000 psi). Recommended for hydraulic applications requiring larger port sizes.

BSPT (British Tapered Thread).

Metric Straight Thread Port similar to BSPP with metric thread. Popular in some European applications.

ISO-6149-1 Metric Straight Thread Port. Recommended for all hydraulic applications designed per ISO standards.

Ports can be supplied at positions other than those shown in Table A at an extra charge. To order, specify port position as shown in Figure 1.

Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

Straight Thread Ports

The SAE straight thread O-ring port is recommended for hydraulic applications. Schrader Bellows will furnish this port configuration at positions shown in Table A on previous page. This port can also be provided at positions other than those shown in Table A at an extra charge. SAE port size numbers are listed next to their NPTF pipe thread counterparts for each bore size in the respective product catalogs. Size number, tube O.D. and port thread size for SAE ports are listed in Table C.

Table C

SAE Straight Thread "O" Ring Ports

Size No.	Tube O.D. (In.)	Thread Size	Size No.	Tube O.D. (In.)	Thread Size
2	¹ /8"	⁵ / ₁₆ - 24	12	³ /4"	1 ¹ /16 - 12
3	³ /16"	³ /8 - 24	—	—	—
4	¹ /4"	⁷ /16 - 20	16	1"	1 ⁵ /16 - 12
5	⁵ /16"	¹ /2 - 20	20	1 ¹ /4"	1 ⁵ /8 - 12
6	³ /8"	⁹ /16 - 18	24	1 ¹ /2"	1 ⁷ /8 - 12
8	¹ /2"	³ /4 - 16	32	2"	2 ¹ /2 - 12
10	⁵ /8"	⁷ /8 - 14	_	—	—

Note: For the pressure ratings of individual connectors, contact your connector supplier. Hydraulic cylinders applied with meter out or deceleration circuits are subject to intensified pressure at the cylinder piston rod end. The rod end pressure is approximately equal to:

effective cap end piston area effective rod end piston area x Operating Pressure

International Ports

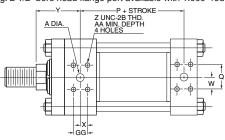
Other port configurations to meet international requirements are available at extra cost. Schrader Bellows cylinders can be supplied, on request, with British standard taper port (BSPT). Such port has a taper of 1 in 16 measured on the diameter $(1/16^{II} \text{ per inch})$. The thread form is Whitworth System, and size and number of threads per inch are as follows:

Table D

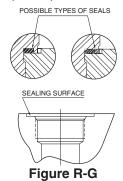
British Standard Pipe Threads

Nominal Pipe Size	No. Threads Per Inch	Pipe O.D.
1/8	28	.383
1/4	19	.518
3/8	19	.656
1/2	14	.825
3/4	14	1.041
1	11	1.309
1 ¹ / ₄	11	1.650
1 ¹ /2	11	1.882
2	11	2.347

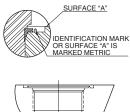
British standard parallel internal threads are designated as BSP and have the same thread form and number of threads per inch as the BSPT type and can be supplied, on request, at extra cost. Unless otherwise specified, the BSP or BSPT port size supplied will be the same nominal pipe size as the NPTF port for a given bore size cylinder.

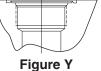

Metric ports can also be supplied to order at extra cost.

Flange Ports (Code 61, 3000 psi) SAE 4 Bolt Flange Ports for PH-2, PH-3 (7" & 8")


Bore Size	SAE Dash No.	Rod Ø	Y	Α	Р	Q	W	X		
2-1/2†	8	1.000	2.38	.50	3.00	1.50	.75	.34		
		1.375	2.75							
3-1/4†	12	1.750	3.00	.75	3.50	1.87	.94	.44		
		2.000	3.13							
		1.750	3.00							
4†	12	2.000	3.13	.75	3.75	1.87	.94	.44		
		2.500	3.38							
		2.000	3.13							
5+	12	2.500	3.38	.75	4.25	1.87	.94	44		
5†	12	3.000	3.38	.75	4.25 1.87	.87 .94	.44			
		3.500	3.38							
6	16	All	3.50	1.00	5.00	2.06	1.03	.52		
7	20	All	3.75	1.25	5.50	2.31	1.16	.59		
8	24	All	3.88	1.50	6.25	2.75	1.37	.70		

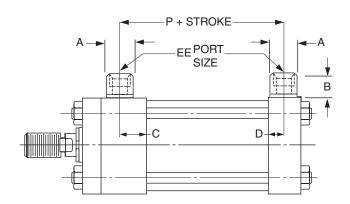
Bore Size	SAE Dash No.	Z	AA	GG
2-1/2†	8	5/16 - 18	.81	.69
3-1/4†	12	3/8 - 16	.75	.87
4†	12	3/8 - 16	.75	.87
5†	12	3/8 - 16	.75	.87
6	16	3/8 - 16	.87	1.03
7	20	7/16 - 14	1.00	1.19
8	24	1/2 - 13	1.06	1.41


†2 1/2", 3 1/4", 4" & 5" bores cap-flange port not available on MF6 mounting. MF2 mounting not available at position 2 or 4. Port flange overhangs cap on ME6 mounting. 2 1/2" bore head flange port available with 1.000" rod only.



BSPP or Metric Port for PL-2, PH-2, PH-3 Series

ISO 6149-1 Port for PL-2, PH-2, PH-3 Series


Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

Oversize Ports

Oversize NPTF or SAE straight thread ports can be provided, at an extra charge, on pneumatic and hydraulic cylinders. For ports one size larger than standard, welded port bosses which protrude from the side of the head or cap are supplied. For dimensions, see drawings and tables below. PH-2 and PL-2 cylinders equipped with cushions at the cylinder cap end can sustain damage to the cushion check valve (cushion bushing) if excessive oil flow enters the cylinder from the cap end port. Cylinders which are equipped with cap end cushions and ordered with one size oversize ports having hydraulic fluid flow exceeding 25 ft./sec. in the line entering the cap end of the cylinder should be ordered with a "solid cushion" at cap end. All cylinders ordered with double oversize ports should always be ordered with a "solid cushion" at cap end.

Cylinders which are connected to a meter out flow control with flow entering the cap end of a cylinder provided by an accumulator may also experience damage to the cushion bushing due to high instantaneous fluid flows. This condition can be eliminated by using a meter in flow control or "solid cushions" at cap end.

Oversize NPTF Port Boss Dimensions PA-2 and PL-2 Series Cylinders

Bore	EE (NPTF)	A (Dia.)	в	с	D	Р
1	3/8	7/8	3/4	⁹ /16	1/2	2 ¹ / ₁₆
1 ¹ / ₂	1/2	1 ¹ /8	¹⁵ /16	⁹ /16	1/2	2 ³ /16
2	1/2	1 ¹ /8	¹⁵ /16	⁹ /16	1/2	2 ³ /16
2 ¹ / ₂	1/2	1 ¹ /8	¹⁵ /16	⁹ /16	1/2	2 ⁵ /16
31/ 4	3/4	1 ³ /8	1	¹¹ / ₁₆	5/8	2 ⁹ / ₁₆
4	3/4	1 ³ /8	1	¹¹ / ₁₆	5/8	2 ⁹ / ₁₆
5	3/4	1 ³ /8	1	¹¹ / ₁₆	5/8	2 ¹³ /16
6	1	1 ³ / ₄	1 ³ /16	¹⁵ /16	3/4	3 ³ / ₁₆
7-8	1	1 ³ / ₄	1 ³ /16	¹⁵ /16	3/4	3 ⁵ /16
10	1 ¹ / ₄	2 ¹ / ₄	1 ⁵ /16	1 ¹ /8	1	4 ¹ / ₄
12	1 ¹ / ₄	2 ¹ / ₄	1 ⁵ /16	1 ¹ /8	1	4 ³ / ₄
14	1 ¹ / ₂	2 ¹ / ₂	1 ⁹ / ₁₆	1 ¹ / ₄	1 ¹ /8	5 ¹ /2

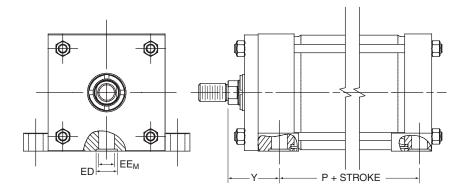
Oversize SAE Straight Thread Port Boss Dimensions PL-2 Series Cylinders

Bore	EE (SAE)	A (Dia.)	в	С	D	Р
1	8	1 ¹ /8	¹⁵ / ₁₆	⁹ / ₁₆	1/2	2 ¹ /16
1 ¹ / ₂	8	1 ¹ /8	¹⁵ / ₁₆	⁹ / ₁₆	1/2	2 ³ /16
2	8	1 ¹ /8	¹⁵ / ₁₆	⁹ / ₁₆	1/2	2 ³ /16
2 ¹ / ₂	8	1 ¹ /8	¹⁵ / ₁₆	⁹ / ₁₆	1/2	2 ⁵ /16
3 ¹ / ₄	12	1 ³ /8	1	¹¹ / ₁₆	⁵ /8	2 ⁹ /16
4	12	1 ³ /8	1	¹¹ / ₁₆	⁵ /8	2 ⁹ /16
5	12	1 ³ /8	1	¹¹ / ₁₆	⁵ /8	2 ¹³ /16
6	16†	1 ³ / ₄	1 ³ / ₁₆	¹⁵ / ₁₆	3/4	3 ³ / ₁₆
8	16†	1 ³ / ₄	1 ³ / ₁₆	¹⁵ / ₁₆	3/4	3 ⁵ / ₁₆

PH-2, PH-3 Series (7" & 8") Cylinders

Bore	EE (NPTF)	A (Dia.)	в	С	D	Р
1 ¹ /2	3/4	1 ³ /8	1	3/4	²⁵ / ₃₂	2 ²⁹ /32
2	3/4	1 ³ /8	1	3/4	²⁵ / ₃₂	2 ²⁹ /32
2 ¹ / ₂	3/4	1 ³ /8	1	3/4	²⁵ / ₃₂	3 ¹ / ₃₂
3 ¹ / ₄	1	1 ³ / ₄	1 ³ / ₁₆	²⁹ / ₃₂	7/8	317/32
4	1	1 ³ / ₄	1 ³ / ₁₆	²⁹ / ₃₂	7/8	325/32
5	1	1 ³ / ₄	1 ³ / ₁₆	²⁹ / ₃₂	7/8	4 ⁹ / ₃₂
6	1 ¹ / ₄	2 ¹ / ₄	1 ⁵ /16	1 ¹ /8	1 ¹ /8	5 ¹ /8
7	1 ¹ / ₂	2 ¹ / ₂	1 ⁹ / ₁₆	1 ³ /8	1 ³ /8	5 ³ /4
8	2	3	1 ¹¹ / ₁₆	1 ¹ / ₂	1 ¹ / ₂	6 ¹ /2

†Available at head end only. For cap end, consult factory. **Port tapped directly into head and cap.


PH-2, PH-3 Series (7" & 8")

Bore	EE (SAE)	A (Dia.)	В	С	D	Р
1 ¹ / ₂	10 ¹	-	-	-	-	27/8
2	10 ¹	-	-	-	-	27/8
2 ¹ / ₂	10 ¹	-	-	-	-	3
3 ¹ / ₄	16	1 ³ / ₄	1 ³ / ₁₆	²⁹ / ₃₂	²⁹ / ₃₂	3 ⁹ / ₁₆
4	16	1 ³ / ₄	1 ³ / ₁₆	²⁹ / ₃₂	²⁹ / ₃₂	3 ¹³ /16
5	16	1 ³ / ₄	1 ³ / ₁₆	²⁹ / ₃₂	²⁹ / ₃₂	4 ⁵ / ₁₆
6	20 ¹	-	-	-	-	5 ³ /16
7	24 ¹	_	_	_	-	5 ⁵ /8
8	N/A	-	-	_	-	6 ³ /8

¹ Port tapped directly into head and cap.

Manifold Ports

Side mounted cylinders, Style MS2 can be furnished with the cylinder ports arranged for mounting and sealing to a manifold surface. The ports are drilled and counterbored for O-ring seals which are provided.

Dimensions —

Manifold Ports for Single and Double Rod Cylinders
PH-2, PH-3 Series (7" & 8") Cylinders

Bore	Rod Dia. (MM)	Y±1/32	P±1/32	Рк±1/32	ЕЕМ	ED
1 ¹ /2	⁵ /8	2	27/8	2 ⁷ /8	3/4	1 ¹ /8
	1	2 ³ /8	1			
2	1	2 ³ /8	2 ⁷ /8	2 ⁷ /8	3/4	1 ¹ /8
	1 ³ /8	2 ⁵ /8				
	1	2 ³ /8				
2 ¹ / ₂	1 ³ / ₄	27/8	3	3	3/4	1 ¹ /8
	1 ³ /8	2 ⁵ /8				
	1 ³ /8	2 ³ / ₄				
3 ¹ / ₄	2	3 ¹ /8	3 ¹ /2	3 ¹ /2	1	1 ³ /8
	1 ³ / ₄	3				
	1 ³ / ₄	2 ²⁷ / ₃₂				
4	2 ¹ / ₂	3 ⁷ / ₃₂	4	4 ¹ / ₁₆	1	1 ³ /8
	2	2 ³¹ / ₃₂				
	2	3 ¹ /8				
5	3 ¹ / ₂					
	2 ¹ / ₂	3 ³ /8	4 ¹ / ₄	4 ¹ / ₄	1	1 ³ /8
	3					
	2 ¹ / ₂					
6	4	3 ¹ /2	5 ¹ /8	47/8	1 ¹ / ₄	1 ⁵ /8
	3					
	3 ¹ / ₂					
	3					
	5					
7	3 ¹ / ₂	3 ¹³ /16	5 ⁷ /8	5 ³ /8	1 ¹ / ₂	1 ⁷ /8
	4					
	4 ¹ / ₂					
	3 ¹ /2					
	5 ¹ /2					_
8	4	3 ¹⁵ /16	65/8	6 ¹ /8	1 ¹ / ₂	1 ⁷ /8
	4 ¹ / ₂					
	5					

PA-2, PL-2 Series Cylinders

Bore	Rod Dia. (MM)	Y±1/32	P±1/32	EEM	ED
1	All	1 ¹⁵ / ₁₆	2 ¹ /8	³ /8	¹¹ / ₁₆
1 ¹ / ₂	⁵ /8	2	2 ¹ /8	1/2	¹³ / ₁₆
	1	2 ³ /8			
	⁵ /8	2			
2	1 ³ / ₈	2 ⁵ /8	2 ¹ /8	1/2	¹³ / ₁₆
	1	2 ³ /8			
	⁵ /8	2			
2 ¹ / ₂	1 ³ / ₄	2 ⁷ /8	2 ¹ / ₄	1/2	¹³ / ₁₆
	1	2 ³ /8			
	1 ³ /8	2 ⁵ /8			
	1	2 ⁷ /16			
3 ¹ / ₄	2	3 ¹ / ₁₆	25/8	5/8	¹⁵ / ₁₆
	1 ³ /8	2 ¹¹ / ₁₆			
	1 ³ / ₄	2 ¹⁵ /16			
	1	27/16			
	2 ¹ / ₂	35/16			
4	1 ³ /8	211/16	25/8	⁵ /8	¹⁵ / ₁₆
	1 ³ /4	2 ¹⁵ /16	-		
	2	3 ¹ / ₁₆			
	1	2 ⁷ /16	-		
_	3 ¹ /2, 2 ¹ /2 & 3	35/16	-7/	<i></i>	15.
5	1 ³ /8	2 ¹¹ / ₁₆	2 ⁷ /8	⁵ /8	¹⁵ /16
	13/4	2 ¹⁵ /16	-		
	2	3 ¹ / ₁₆			
	1 ³ /8	2 ¹³ /16			
6	4, 2 ¹ / ₂ , 3 & 3 ¹ / ₂	3 ⁷ /16	3 ¹ /8	7/8	1 ³ / ₁₆
	1 ³ / ₄	3 ¹ / ₁₆	-		
	2	3 ³ / ₁₆			
	1 ³ / ₈	2 ¹³ / ₁₆		77	13/
7 - 8	$\frac{5^{1}/_{2}, 2^{1}/_{2}, 3, 3^{1}/_{2}, 4, 4^{1}/_{2} \& 5}{1^{3}/_{4}}$	3 ⁷ / ₁₆	3 ¹ / ₄	7/8	1 ³ / ₁₆
	2	3 ¹ / ₁₆	-		
	2 1 ³ /4	3 ³ / ₁₆ 3 ¹ / ₈			
10	2	3 ¹ /8 3 ¹ /4	4 ¹ /8	1 ³ / ₁₆	1 ¹ / ₂
10	-	3 ¹ / ₄ 3 ¹ / ₂	4'/8	I 7/16	1 1/2
12	2 ¹ / ₂ , 3, 3 ¹ / ₂ , 4, 4 ¹ / ₂ , 5 & 5 ¹ / ₂	3 ¹ / ₂ 3 ¹ / ₄	4 ⁵ /8	1 ³ / ₁₆	1 ¹ / ₂
12		3 ¹ / ₄ 3 ¹ / ₂	4~/8	I ~/16	1./2
14	2 ¹ / ₂ , 3, 3 ¹ / ₂ , 4, 4 ¹ / ₂ , 5 & 5 ¹ / ₂ All	3 ¹ /2 3 ¹³ /16	E1/	19/	1 ⁷ /8
14	All	3' 16	5 ¹ / ₂	1 ⁹ / ₁₆	1'/8

Rod End Data

Rod end dimension symbols as shown comply with the National Fluid Power Association dimensional code. The following chart indicates the symbols used in this catalog.

Description	Symbol
Thread diameter and pitch	KK or CC
Length of thread	А
Length of rod extension from face of gland retainer to end of retracted rod	A + W (Male Thread) W (Female Thread)

Three rod ends for Schrader Bellows cylinders are offered as shown on the dimension pages of this catalog. They are Schrader Bellows styles 2, 3 and 4, and all three are optional without price penalty. If a rod end style is not specified, style 2 (N.F.P.A. Style SM) will be supplied. Style 2 is supplied with high strength rolled thread studs on piston rods through 2" diameter. Longer studs in standard sizes are available, see table below.

Warning!

Piston rods are not normally designed to absorb bending moments or loads which are perpendicular to the axis of piston rod motion. These additional loads can cause the piston rod end to fail. If these types of additional loads are expected to be imposed on the piston rods, their magnitude should be made known to our Engineering Department so they may be properly addressed. Additionally, cylinder users should always make sure that the piston rod is securely attached to the machine member.

On occasion cylinders are ordered with double rods. In some cases a stop is threaded onto one of the piston rods and used as an external stroke adjuster. This can cause a potential safety concern and can also lead to premature piston rod failure. The external stop will create a pinch point and the cylinder user should consider appropriate use of guards. If an external stop is not parallel to the final contact surface it will place a bending moment on the piston rod. An external stop will also negate the effect of a cushion and will subject the piston rod to an impact loading. These two (2) conditions can cause piston rod failure. The use of external stroke adjusters should be reviewed with our Engineering Department.

Piston Rod End Threads

Standard piston rod end thread lengths are shown as dimension "A" in Catalog dimension pages. Special rod end threads which are two times standard length can be supplied at a small extra cost. Available thread lengths are shown in the table below. To order, add suffix "2" to piston rod model number code and specify as Style #22.

Optional Piston Rod End Studs

	Rod End Style	
Piston Rod Dia.	Thread Dia. & Pitch (KK)	Length (= 2 × A)
⁵ /8	⁷ / ₁₆ - 20	1 ¹ / ₂
1	³ /4 - 16	2 ¹ /4
1 ³ /8	1 - 14	3 ¹ / ₄
1 ³ / ₄	1 ¹ /4 - 12	4
2	1 ¹ /2 - 12	4 ¹ / ₂

International Rod End Threads

Piston rod threads to meet international requirements are available at extra cost. Schrader Bellows cylinders can be supplied with British standard fine (W) or metric (M). To order, specify in model number. For dimensions, consult factory.

Special Rod Ends

If a rod end configuration other than the standard styles 2, 3 and 4 is required, such special rod ends can be provided. The designation "Style 0" is assigned to such specials and is incorporated in the cylinder model number. To order, specify "Style 0" and give desired dimensions for CC or KK, A, LA or LAF, or W if female end. If otherwise special, send a dimensioned sketch.

Special Assemblies from Standard Parts

Each dimensioned drawing in this catalog has position numbers shown on the end view to identify the four sides of the cylinder. These aid in communications and simplify the writing of specifications that cover changes in port positions, etc. Following are several suggested special assemblies that can be made up from standard parts.

- a) By calling out the position numbers for the desired locations for head and cap ports, many mounting styles can be assembled with ports located at 90° or 180° from standard. In such special assemblies, the cushion needle and check valves are also repositioned since their relation with the port position does not change.
- b) The cushion needle valve can be assembled on side position 4 with the check valve on side 2 or most mounting styles when the port is in the standard side position 1. On mounting styles MT1, MT2 and MT4, the cushion needle valves are provided only on the side position 3 on the head or cap which accommodates the mounting. The opposite head or cap can be rotated.
- c) Standard mountings in different combinations can be specified on either head or cap end. Consult factory for details.

Single-Acting Cylinders

Double-acting cylinders are supplied as standard. They can also be used a single-acting cylinders where fluid force is applied to only one side of the piston, with the load or other external forces acting to "return" the piston after pressure is exhausted.

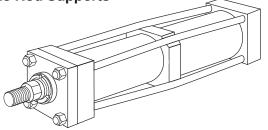
Spring-Returned, Single-Acting Cylinders – Singleacting, spring-returned models can also be provided. Load conditions and friction factors must be considered in supplying the proper spring for the application. In addition, it is necessary that information be supplied as to which side of the piston the spring should act upon. Specify "Spring to return piston rod" or "Spring to advance piston rod."

On longer stroke spring-returned cylinders, it is recommended that tie rod extensions be specified on the cylinder end in which the spring is located so that the cap or head against which the spring is acting can be "backed-off" slowly until compression of the spring is relieved. In such cases it should also be specified that the tie rod nuts be welded to the tie rods at the opposite end of the cylinder to further insure safe disassembly.

Consult factory when ordering spring-returned cylinders.

65

www.schraderbellows.com


Stroke Data

Schrader Bellows cylinders are available in any practical stroke length. The following information should prove helpful to you in selecting the proper stroke for your cylinder application.

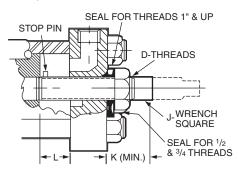
Stroke Tolerances

Stroke length tolerances are required due to buildup of tolerances of piston, head, cap and cylinder body. Standard production stroke tolerances run $+^{1}/_{32}$ " to $-^{1}/_{64}$ " up to 20" stroke, $+^{1}/_{32}$ " to -.20" for 21" to 60" and $+^{1}/_{32}$ " to $-^{1}/_{32}$ " for greater than 60" stroke. For closer tolerances on stroke length, it is necessary to specify the required tolerance plus the operating pressure and temperature at which the cylinder will operate. Stroke tolerances smaller than .015" are not generally practical due to elasticity of cylinders. If machine design requires such close tolerances, use of a stroke adjuster (at right) may achieve the desired result.

Tie Rod Supports

Rigidity of Envelope

The pre-stressed tie rod construction of Schrader Bellows cylinders has advantages in rigidity within the limits of the cylinder tube to resist buckling. For long stroke cylinders within practical limits, Schrader Bellows provides exclusive TIE ROD SUPPORTS (see table below) which move the tie rod centerlines radially outward.


Standard tie rod supports are kept within the envelope dimensions of the head and cap, and generally do not interfere with mounting a long cylinder.

ed		Stroke (Inches)											
<u> </u>	Bore	36	48	60	72	84	96	108	120	132	144	156	168
r of equi	1	—	1	1	1	2	Consult Factory						
l S Œ	1 ¹ / ₂	-	—	1	1	1	2	2	2	3	3	3	4
orts	2	—	—	—	1	1	1	1	2	2	2	2	3
NZ Q	2 ¹ / ₂	—	—	—	—	—	1	1	1	1	1	2	2
dn	3 ¹ / ₄	—	—	—	—	—	—	—	1	1	1	1	1
S S	4	_		_	_	_	_	_	_	_	1	1	1

Note: 5" through 14" bore sizes - no supports required.

Stroke Adjusters

For the requirement where adjusting the stroke is specified, Schrader Bellows has several designs to offer, one of which is illustrated below. This is suitable for infrequent adjustment and is economical.*

Here a "retracting stroke adjuster" must be called for in specifications, and the length *of the adjustment must be specified.*

Where frequent adjustment or cushions at the cap end are required, other designs are available according to application needs.

Bore	Size				
PA-2 PL-2 Series	PH-2 Series	D	J	к	L (Max.)
1 ¹ /2, 2	1 ¹ / ₂	¹ / ₂ - 20	⁵ / ₁₆	¹⁵ / ₁₆	5
21/2, 31/4, 4	2	³ /4 - 16	⁷ / ₁₆	1 ¹ / ₄	8
5, 6	2 ¹ / ₂ , 3 ¹ / ₄	1 - 14	5/8	1 ¹¹ / ₁₆	9
8	4	1 ¹ /2-12	¹⁵ / ₁₆	2 ¹ /8	18
10	5	2-12	1 ⁵ / ₁₆	211/16	20
12, 14	6	2 ¹ /2-12	1 ¹¹ / ₁₆	3 ¹ /8	20
_	7	3-12	2	3 ¹ / ₄	20
—	8	3 ¹ /2 - 12	2 ³ /8	3 ¹ / ₂	20

* Infrequent is defined by positioning the retract stroke in a couple of attempts at original machine set-up. The frequent stroke adjuster is recommended when adjustments may be required by the end user.

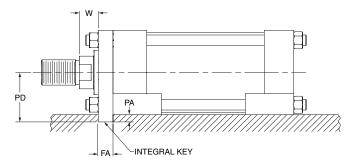
Rod Gland Drain

Rod gland drains permit capture of fluid that may accumulate between the primary rod seal and the wiperseal. A 1/8 NPTF port is provided in the gland retainer or cylinder head (see table below) for connection of plumbing that flows oil back to the reservoir. Use of translucent tubing as the drain to reservoir line can provide visual indication of a need for rod seal service when the cylinder gland is not easily visible within the equipment. Specify rod gland drain port option and the drain port location, position 1, 2, 3, or 4.

Drain Port Location

Bore	Rod Dia.	MX2, MX0, MF2, MF6, ME6, MS2 (no key), MS4 (no key), MT1, MT2, MP1, MT4, MPU3	MX1 MX3	MF1 MF5	ME5	MS2, MS4 With Thrust Key Plate
1 1/2	5/8	Head	Head	Head	Head	Head
1 1/2	1	Full	Full	Flange	Head	Key
2	1	Bolted	Full	Flange	Head	Key
2	1 3/8	Full	Full	Flange	Head	Key
	1	Bolted	Bolted	Flange	Head	Head
2 1/2	1 3/8	Bolted	Bolted	Flange	Head	Head
	1 3/4	Bolted	Bolted	Flange	Head	Key
3 1/4	All	Bolted	Bolted	Flange	Head	Head
4	All	Bolted	Bolted	Head	Head	Head
5	2 - 3	Bolted	Bolted	Head	Head	Head
3	3 1/2	Bolted	Bolted	Flange	Head	Key
6 - 8	All*	Bolted	Bolted	Head	Head	Head

* On 5¹/₂" diameter piston rods, with drain in position 2 or 4, the port will be offset 18 degrees clockwise from the position specified.


Bolted = Bolted Retainer Flange = Flange Retainer Full = Full Retainer Key = Key Retainer

The full square retainer, key retainer, or mounting flange thickness is increased on bore and rod combinations listed in the table below. The piston rod is extended on MX1, MX3, MF5, and MF1 mounts to provide the standard 'W' dimension.

Bore	Rod Dia.	Retainer or Mounting Flange Thickness
1 1/2	1	5/8
2	1 3/8	3/4
2 1/2	1 3/4	7/8
3 1/4	1 3/4 & 2	7/8

Thrust Key Mountings

Thrust key mountings eliminate the need of using fitted bolts or external keys on side mounted cylinders. Schrader Bellows cylinders in mounting styles MS2 and MS4 can be provided with the gland retainer plate extended below the mounting side of the cylinder (see illustration below). This extended retainer plate can then be fitted into a keyway milled into the mounting surface of the machine member.

PA-2, PN and PL-2 Series

Bore	Dim. FA	Dim. PA	Dim. PD Mtg. Styles MS2, MS4
1			¹⁵ / ₁₆
1 ¹ / ₂	.312 ^{+.000} 002	³ /16	1 ³ / ₁₆
2	002	/10	1 ⁷ / ₁₆
2 ¹ / ₂			1 ¹¹ / ₁₆
3 ¹ / ₄	= oo ± 000		2 ³ / ₁₆
4	.562 ^{+.000} 002	5/16	2 ⁹ / ₁₆
5	002		3 ¹ / ₁₆
6	.687 ^{+.000} 002	³ /8	3 ⁵ /8

PH-2, PH-3 Series (7" & 8") Cylinders

Bore	+.000 /001 Dim. FA	Dim. PA	Dim. PD Mtg. Styles MS2, MS4
1 1/2	.361	³ / ₁₆	1 ⁷ / ₁₆
2	.611	⁵ /16	1 ¹³ / ₁₆
2 ¹ / ₂	.611	⁵ /16	2 ¹ / ₁₆
31/4	.736	³ /8	2 ⁵ /8
4	.861	⁷ / ₁₆	2 ¹⁵ / ₁₆
5	.861	⁷ / ₁₆	3 ¹¹ / ₁₆
6	.986	1/2	4 ¹ / ₄
7	.986	¹ / ₂	43/4
8	.986	1/2	51/4

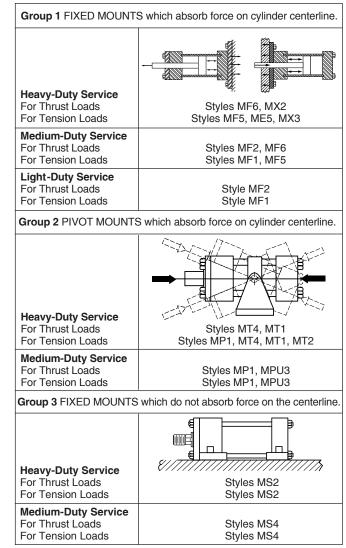
Stroke Data

Schrader Bellows cylinders are available in any practical stroke length. The following information should prove helpful to you in selecting the proper stroke for your cylinder application.

Stroke Tolerances

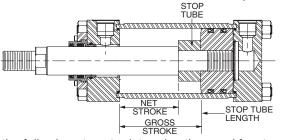
Stroke length tolerances are required due to buildup of tolerances of piston, head, cap and cylinder tube. Standard production of stroke tolerances run +.031" to

Mounting Groups


Standard mountings for fluid power cylinders fall into three basic groups. The groups can be summarized as follows:

Group 1 Straight Line Force Transfer with fixed mounts which absorb force on cylinder centerline.

Group 2 Pivot Force Transfer. Pivot mountings permit a cylinder to change its alignment in one plane.

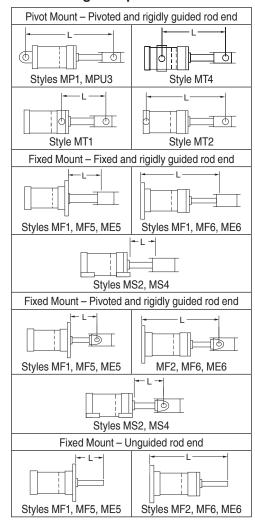

Group 3 Straight Line Force Transfer with fixed mounts which do not absorb force on cylinder centerline.

Because a cylinder's mounting directly affects the maximum pressure at which the cylinder can be used, the chart below should be helpful in selection of the proper mounting combination for your application. Stroke length, piston rod connection to load, extra piston rod length over standard, etc., should be considered for thrust loads. Alloy steel mounting bolts are recommended for all mounting styles, and thrust keys are recommended for Styles MS2 and MS4. -.015" up to 20" stroke, +.031" to -.020" for 21" to 60" and +.031" to -.031" for greater than 60" stroke. For closer tolerances on stroke length, it is necessary to specify the required tolerance plus the pressure and temperature at which the cylinder will operate. Stroke tolerances smaller than .015" are not generally practical due to elasticity of cylinders. If machine design requires such close tolerances, use of a stroke adjuster may achieve the desire result.

Stop Tubing

Stop tube is recommended to lengthen the distance between the rod bearing and piston bearing to reduce bearing loads on long push stroke cylinders when the cylinder is fully extended. This is especially true of horizontally mounted cylinders. As part of the piston assembly and positioned between the piston and head, a stop tube restricts the extended position of the rod using the increased distance to achieve additional stability.

Use the following steps to determine the need for stop tube and, if required, how long it should be.


1. Examine the groups of cylinder illustrations below and determine which mounting and rod guiding group type match the required cylinder application.

- 2. Establish the Basic Length (L), with the piston rod fully extended, for the selected illustration by using the dimensional tables on previous pages of this catalog. For pivot mounted cylinders, the pin-to-pin dimension with the piston rod fully extended must be used. Regardless of mounting style, be sure to include any extended piston rod length beyond the catalog standard.
- 3. In the Stop Tube Table select the column for the appropriate mounting style and rod end guiding type. In the Basic Length (L) column, find the row with the range that includes the value calculated in Step 2. The next respective column to the right has the required length of stop tube.

Note: Mounting Styles MP1, MT2, MF2, MF6, ME6 and MPU3 that are mounted horizontally should also be checked for turning moments and loads between the rod bearing and piston to ensure they are not excessive. Weight of oil must be included in determining bearing loads.

When specifying cylinders with stop tube be sure to call out the net stroke and the length of the stop tube. Machine design can be continued without delay by laying in a cylinder equivalent in length to the NET STROKE PLUS STOP TUBE LENGTH, which is referred to as GROSS STROKE.

Cylinder Mounting and Rod Guiding Groups

Pivot Mounts (MP1, MT1, MT2, MT4 and MPU3)		Fixed Mounts (MS2, MS4, MF2, MF6, ME6, MF1, MF5, ME5, MX1, MX2, MX3)					
Pivoted and Rigidly Guided Rod End		Fixed & Rigidly Guided Rod End		Pivoted & Rigidly Guided Rod End		Unguided Rod End	
Basic Length (L)	Stop Tube Length	Basic Length (L)	Stop Tube Length	Basic Length (L)	Stop Tube Length	Basic Length (L)	Stop Tube Length
0 - 40	0	0 - 80	0	0 - 57	0	0 - 20	0
41 - 50	1	81 - 100	1	58 - 71	1	21 - 25	1
51 - 60	2	101 - 120	2	72 - 86	2	26 - 30	2
61 - 70	3	121 - 140	3	87 - 100	3	31 - 35	3
71 - 80	4	141 - 160	4	101 - 114	4	36 - 40	4
81 - 90	5	161 - 180	5	115 - 129	5	41 - 45	5
91 - 100	6	181 - 200	6	130 - 143	6	46 - 50	6
101 - 110	7	201 - 220	7	144 - 157	7	51 - 55	7
111 - 120	8	221 - 240	8	158 - 171	8	56 - 60	8
121 - 130	9	241 - 260	9	172 - 186	9	61 - 65	9
131 - 140	10	261 - 280	10	187 - 200	10	66 - 70	10
141 - 150	11	281 - 300	11	201 - 214	11	71 - 75	11
151 - 160	12			215 - 229	12	76 - 80	12
161 - 170	13	Consult Factory		230 - 243	13	81 - 85	13
171 - 180	14			244 - 257	14	86 - 90	14
181 - 190	15			258 - 271	15	91 - 95	15
191 - 200	16			272 - 286	16	96 - 100	16
201 - 210	17			287 - 300	17	101 - 105	17
211 - 220	18					106 - 110	18
221 - 230	19					111 - 115	19
231 - 240	20					116 - 120	20
241 - 250	21			Consult Factory		121 - 125	21
251 - 260	22					126 - 130	22
261 - 270	23					131 - 135	23
271 - 280	24					136 - 140	24
281 - 290	25					141 - 145	25
291 - 300	26					146 - 150	26
Consult Factory Consult Factory							

. . .

Stop Tube Length vs Basic Length (L)

.....

Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

69 www.schraderbellows.com C

Piston Rod Diameter Selection

Long stroke cylinders that work on push with the piston rod loaded in compression should be checked, using the following steps, to ensure an appropriate piston rod diameter is specified.

- 1. First, determine whether stop tubing is required as described on the previous page.
- Use the Basic Length (L) that was established for determining the stop tube length and then add the required stop tube length to the Basic Length to obtain an Adjusted Basic Length (L_A).
- 3. In the table below, for the mounting style and rod end guiding condition that will be used, find the row for the Bore and Rod combination that is required.
- 4. Follow the Bore and Rod row to the right and find the Operating Pressure column that is closest, but

exceeds the system pressure. The intersection of the Bore and Rod row and Operating Pressure column displays the maximum allowable L_A . If L_A in the table is greater than or equal to the calculated L_A , the rod diameter selected is satisfactory for the application.

- 5. If L_A in the table is less than the calculated Adjusted Basic Length move down the column to a rod diameter with an L_A that exceeds the requirement.
- If the L_A specifies a rod diameter in a larger bore then restart the process of sizing the stop tube and re-check the rod diameter. Contact the factory if L_A exceeds 300 inches.

Note: Data in these tables assume standard rod extension (W dimension) and standard rod end accessories. If different, consult factory.

PH-2 & PH-3 Series Maximum Basic Lengths	s (L) (all dimensions in inches)
--	----------------------------------

Bore	Rod				F				-	-		-	-	X3, MS	52, MS4	.)			
Ø	Ø				Guide	d Rod	End	Pivo	ted and	Rigid	y Guid	ed Rod	End		Un	guided	Rod E		at rai
		500	1000	1500	2000	2500	at psi: 3000	500	1000	1500	2000	2500	at psi: 3000	500	Allowab	1500	2000	2500	at psi: 3000
	0.625	500	35	29	2000	2300	20	36	25	21	18	16	15	13	9	7	6	6	5
1.50	1.000	128	91	74	64	57	52	92	65	53	46	41	37	32	23	19	16	14	13
0.00	1.000	96	68	56	48	43	39	69	49	40	34	31	28	24	17	14	12	11	10
2.00	1.375	182	129	105	91	81	74	130	92	75	65	58	53	45	32	26	23	20	19
	1.000	77	54	44	38	34	31	55	39	32	27	25	22	19	14	11	10	9	8
2.50	1.375	146	103	84	73	65	59	104	73	60	52	46	42	36	26	21	18	16	15
	1.750	236	167	136	118	105	96	168	119	97	84	75	69	59	42	34	29	26	24
0.05	1.375	112	79	65	56	50	46	80	57	46	40	36	33	28	20	16	14	13	11
3.25	1.750	181	1 <u>28</u> 167	105	91 118	<u>81</u> 106		130	92	75 98	65	58 76	53	45	32	<u>26</u> 34	23 30	20 26	19
	2.000	<u>237</u> 147	107	137 85	74	66	<u>97</u> 60	169 105	120 74	<u>98</u> 61	85 53	47	69 43	59 37	42 26	21	18	<u>∠o</u> 16	24 15
4 00	2.000	192	136	111	96	86	79	137	97	79	69	61	56	48	34	28	24	22	20
т.00	2.500	300	213	174	150	134	123	215	152	124	107	96	88	75	53	43	38	34	31
	2.000	154	109	89	77	69	63	110	78	63	55	49	45	38	27	22	19	17	16
5.00	2.500	241	170	139	120	108	98	172	121	99	86	77	70	60	43	35	30	27	25
5.00	3.000	300	245	200	173	155	141	247	175	143	124	111	101	87	61	50	43	39	35
	3.500	300	300	272	236	211	192	300	238	194	168	151	137	118	83	68	59	53	48
	2.500	200	142	116	100	90	82	143	101	83	72	64	58	50	35	29	25	22	20
6.00	3.000	289	204	167	144	129	118	206	146	119	103	92	84	72	51	42	36	32	29
0.00	3.500	300	278	227	196	176	160	281	198	162	140	125	115	98	69	57	49	44	40
	4.000 3.000	300 247	300	296 143	257 124	229 111	209 101	300	259 125	212	183 88	164 79	150 72	128 62	91 44	74 36	64 31	57 28	52 25
	3.500	300	175 238	143	124	151	137	241	125	139	120	108	98	84	60	49	42	38	34
7.00	4.000	300	300	254	220	197	180	300	222	181	157	140	128	110	78	63	55	49	45
7.00	4.500	300	300	300	278	249	227	300	281	230	199	178	162	139	98	80	70	62	57
	5.000	300	300	300	300	300	281	300	300	283	245	220	200	172	121	99	86	77	70
	3.500	295	208	170	147	132	120	210	149	122	105	94	86	74	52	43	37	33	30
ĺ	4.000	300	272	222	192	172	157	275	194	159	137	123	112	96	68	56	48	43	39
8.00	4.500	300	300	281	244	218	199	300	246	201	174	156	142	122	86	70	61	54	50
	5.000	300	300	300	300	269	245	300	300	248	215	192	175	150	106	87	75	67	61
	5.500	300	300	300	300	300	297	300	300	300	260	232	212	182	129	105	91	81	74
	4.500	300	276	225	195	174	159	278	197	161	139	124	114	97	69	56	49	44	40
10.00	5.000	300	300	278	241	215	196	300	243	198	172	154	140	120	85	69	60	54	49
	5.500 7.000	300 300	300 300	<u>300</u> 300	291 300	260 300	238 300	<u>300</u> 300	294 300	240 300	208 300	186 300	170 275	146 236	103 167	84 136	73 118	65 105	59 96
	5.500	300	300	280	243	217	198	300	245	200	173	155	141	121	86	70	61	54	50
12 00	7.000	300	300	300	300	300	300	300	300	300	281	251	229	196	139	113	98	88	80
12.00	8.000	300	300	300	300	300	300	300	300	300	300	300	299	257	181	148	128	115	105
	7.000	300	300	300	300	300	275	300	300	278	241	215	196	168	119	97	84	75	69
14.00	8.000	300	300	300	300	300	300	300	300	300	300	281	256	220	155	127	110	98	90
	10.000	300	300	300	300	300	300	300	300	300	300	300	300	300	243	198	172	154	140
Ţ	8.000	300	300	300	300	300	300	300	300	300	275	246	224	192	136	111	96	86	79
16.00	9.000	300	300	300	300	300	300	300	300	300	300	300	284	244	172	141	122	109	99
	10.000	300	300	300	300	300	300	300	300	300	300	300	300	300	213	174	150	134	123
18.00	9.000	300	300	300	300	300	300	300	300	300	300	277	252	216	153	125	108	97	88
	10.000	300	300	300	300	300	300	300	300	300	300	300	300	267	189	154	134	120	109
20.00	10.000	300	300	300	300	300	300	300	300	300	300	300	281	241	170	139	120	108	98

¹ Maximum operating pressure is limited for Mounting Styles MF1 and MF5. Please refer to maximum operating pressure per bore in Pressure Ratings table located on the dimension page for each of these mounting styles.

PH-2 & PH-3 Series Maximum Basic Lengths (LA) (all dimensions in inches)

Bore	Rod						R	ear Fix	ed Mo	unts (N	1F2 ¹ , M	F6 ¹ , M	E6, MX	2)					
Ø	Ø		ed and Allowab						ted and					Max. A			l Rod E ic Leng		at psi:
		500	1000	1500	2000	2500	3000	500	1000	1500	2000	2500	3000	500	1000	1500	2000	2500	3000
1 50	0.625	70	50	40	35	31	29	50	35	29	25	22	20	18	12	10	9	8	7
1.50	1.000	170	120	98	85	76	69	121	86	70	61	54	50	42	30	25	21	19	17
2 00	1.000	132	93	76	66	59	54	94	67	54	47	42	38	33	23	19	16	15	13
2.00	1.375	232	164	134	116	104	95	166	117	96	83	74	68	58	41	33	29	26	24
	1.000	107	76	62	54	48	44	77	54	44	38	34	31	27	19	16	13	12	11
2.50	1.375	197	140	114	99	88	81	141	100	81	70	63	58	49	35	28	25	22	20
	1.750	300	213	174	151	135	123	215	152	124	108	96	88	75	53	43	38	34	31
	1.375	156	110	90	78	70	64	111	79	64	56	50	45	39	28	22	19	17	16
3.25	1.750	246	174	142	123	110	100	176	124	102	88	79	72	62	44	36	31	28	25
	2.000	300	221	181	157	140	128	224	158	129	112	100	91	78	55	45	39	35	32
4.00	1.750	203	144	117	102	91	83	145	103	84	73	65	59	51	36	29	25	23	21
4.00	2.000	261	185	151	131	117	107	187	132	108	93	83	76	65	46	38	33	29	27
	2.500	300	274	224	194	173	158	277	196	160	138	124	113	97	69	56	48	43	40
	2.000	214	151	123	107	96 146	87	153	108	88	76	68 104	62 95	53 82	38 58	31 47	27 41	24 36	22
5.00	2.500	300	231	188	163 226		133	233	165	135	117			-			56		33
	3.000 3.500	300 300	300 300	261 300	226	202 259	184 236	300 300	228 292	186 239	161 207	144 185	132 169	113 145	80 102	65 83	50 72	50 65	46 59
	2.500	278	197	161	139	124	114	199	141	115	99	89	81	70	49	40	35	31	28
	3.000	300	278	227	197	176	161	281	199	162	140	126	115	98	70	40 57	49	44	40
6.00	3.500	300	300	300	260	233	212	300	263	215	186	166	152	130	92	75	65	58	53
	4.000	300	300	300	300	292	266	300	300	269	233	208	190	163	115	94	82	73	67
	3.000	300	241	197	171	153	139	244	172	141	122	109	100	85	60	49	43	38	35
	3.500	300	300	263	228	204	186	300	230	188	163	146	133	114	81	66	57	51	46
7.00	4.000	300	300	300	289	259	236	300	292	239	207	185	169	145	102	83	72	65	59
	4.500	300	300	300	300	300	288	300	300	290	252	225	205	176	124	102	88	79	72
ľ	5.000	300	300	300	300	300	300	300	300	300	296	264	241	207	146	119	103	93	84
	3.500	300	288	235	203	182	166	291	205	168	145	130	119	102	72	59	51	45	42
	4.000	300	300	300	261	234	213	300	264	216	187	167	152	131	92	75	65	58	53
8.00	4.500	300	300	300	300	290	264	300	300	267	231	207	189	162	114	93	81	72	66
	5.000	300	300	300	300	300	300	300	300	300	277	248	226	194	137	112	97	87	79
	5.500	300	300	300	300	300	300	300	300	300	300	289	264	226	160	131	113	101	92
	4.500	300	300	300	269	241	220	300	272	222	192	172	157	135	95	78	67	60	55
10.00	5.000	300	300	300	300	300	300	300	300	300	300	300	300	296	209	171	148	132	121
10.00	5.500	300	300	300	300	294	268	300	300	271	235	210	192	164	116	95	82	73	67
	7.000	300	300	300	300	300	300	300	300	300	280	250	229	196	139	113	98	88	80
	5.500	300	300	300	300	299	273	300	300	276	239	213	195	167	118	96	84	75	68
12.00	7.000	300	300	300	300	300	300	300	300	300	300	300	300	300	231	189	163	146	133
	8.000	300	300	300	300	300	300	300	300	300	300	300	300	260	184	150	130	116	106
11.00	7.000	300	300	300	300	300	300	300	300	300	300	291	266	228	161	132	114	102	93
	8.000	300	300	300	300	300	300	300	300	300	300	300	300	300	293	240	207	186	169
	10.000		300	300	300	300	300	300	300	300	300	300	300	290	205	167	145	129	118
	8.000	300	300	300	300	300	300	300	300	300	300	300	300	260	184	150	130	116	106
	9.000 10.000	300	300	300	300	300	300	300	300	300	300	300	300	300	227	186	161	144	131
	0.000	300	300	300	300	300	300	300	300	300	300	300	300	300	272	222	192	172	157
18.00	9.000 10.000	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	300 300	293 300	207 250	169 204	146 177	131 158	119 144
20 00	10.000	300	300			300				300	300	300					163	146	
20.00	10.000	300	300	300	300	300	300	300	300	300	300	300	300	300	231	188	103	140	133

¹ Maximum operating pressure is limited for Mounting Styles MF2 and MF6. Please refer to maximum operating pressure per bore in Pressure Ratings table located on the dimension page for each of these mounting styles.

PH-2 & PH-3 Series Maximum Basic Lengths (LA) (all dimensions in inches)

Bore Ø	Rod Ø			ar Pivo P1, MP				Fron	t and Ir	nterme (MT1,		ivot Mo	ounts
			oted & Allowab						oted & Allowat				
		500	1000	1500	2000	2500	3000	500	1000	1500	2000	2500	3000
1.50	0.625	35	25	20	18	16	14	25	18	14	13	11	10
1.50	1.000	85	60	49	42	38	35	64	45	37	32	29	26
2.00	1.000	66	47	38	33	29	27	48	34	28	24	22	20
2.00	1.375	116	82	67	58	52	47	91	64	53	45	41	37
	1.000	54	38	31	27	24	22	38	27	22	19	17	16
2.50	1.375	99	70	57	49	44	40	73	51	42	36	33	30
	1.750	151	106	87	75	67	61	118	83	68	59	53	48
	1.375	78	55	45	39	35	32	56	40	32	28	25	23
3.25	1.750	123	87	71	62	55	50	91	64	52	45	41	37
	2.000	157	111	90	78	70	64	118	84	68	59	53	48
	1.750	102	72	59	51	45	41	74	52	43	37	33	30
4.00	2.000	131	92	75	65	58	53	96	68	56	48	43	39
	2.500	194	137	112	97	87	79	150	106	87	75	67	61
	2.000	107	76	62	53	48	44	77	54	44	38	34	31
5.00	2.500	163	115	94	82	73	67	120	85	69	60	54	49
5.00	3.000	226	160	130	113	101	92	173	122	100	87	77	71
	3.500	289	204	167	145	129	118	236	167	136	118	105	96
	2.500	139	98	80	70	62	57	100	71	58	50	45	41
6.00	3.000	197	139	114	98	88	80	144	102	83	72	65	59
0.00	3.500	260	184	150	130	116	106	196	139	113	98	88	80
	4.000	300	231	188	163	146	133	257	181	148	128	115	105
	3.000	171	121	99	85	76	70	124	87	71	62	55	50
	3.500	228	161	132	114	102	93	168	119	97	84	75	69
7.00	4.000	289	204	167	145	129	118	220	155	127	110	98	90
	4.500	300	249	203	176	157	144	278	197	161	139	124	114
	5.000	300	293	239	207	185	169	300	243	198	172	154	140
	3.500	203	144	117	102	91	83	147	104	85	74	66	60
	4.000	261	185	151	131	117	107	192	136	111	96	86	79
8.00	4.500	300	229	187	162	145	132	244	172	141	122	109	99
	5.000	300	274	224	194	174	158	300	213	174	150	134	123
	5.500	300	300	261	226	202	185	300	257	210	182	163	149
	4.500	269	190	155	135	120	110	195	138	112	97	87	80
10.00	5.000	300	300	300	296	265	242	241	170	139	120	108	98
10.00	5.500	300	232	190	164	147	134	291	206	168	146	130	119
	7.000	300	277	226	196	175	160	300	300	272	236	211	192
	5.500	300	236	193	167	149	136	243	171	140	121	108	99
12.00	7.000	300	300	300	300	292	267	300	278	227	196	176	160
	8.000	300	300	300	260	233	213	300	300	296	257	229	209
	7.000	300	300	263	228	204	186	300	238	194	168	151	137
14.00	8.000	300	300	300	300	300	300	300	300	254	220	197	180
	10.000	300	300	300	290	259	236	300	300	300	300	300	281
	8.000	300	300	300	260	233	213	300	272	222	192	172	157
16.00	9.000	300	300	300	300	288	263	300	300	281	244	218	199
	10.000	300	300	300	300	300	300	300	300	300	300	269	245
18.00	9.000	300	300	300	293	262	239	300	300	250	216	194	177
	10.000	300	300	300	300	300	289	300	300	300	267	239	218
20.00	10.000	300	300	300	300	292	267	300	300	278	241	215	196

¹ Maximum operating pressure is limited for Mounting Style MPU3. Please refer to maximum operating pressure per bore in Pressure Ratings table located on the dimension page for Mounting Styles MPU3.

PL-2 & PA-2 Series Maximum Basic Lengths (LA) (all dimensions in inches)

Notes: Operating Pressure column values are different for bore size ranges 1.00 - 3.25 and 4.00 - 8.00.

These tables can be used for PA-2 Series operating at 125 and 250 psi. Contact the factory to size piston rods for lower operating pressures, longer strokes and larger bore size PA-2 Series cylinders.

Bore	Rod								Front a	and S	ide F	ixed	Moun	ts (MF	1 ¹ , MF	5, MX	1, MX3	B, MS	2)						
Ø	Ø						ded R ength (dly Gu sic Le				Ма	ıx. Al			ed Roo sic Le		[L₄) at	psi:
		250	500	750	1000	1250	1500	1750	2000	250	500	750	1000	1250	1500	1750	2000	250	500	750	1000	1250	1500	1750	2000
1.00	0.500	68	48	39	34	30	28	26	24	49	34	28	24	22	20	18	17	17	12	10	9	8	7	6	6
1.00	0.625	106	75	61	53	48	43	40	38	76	54	44	38	34	31	29	27	27	19	15	13	12	11	10	9
1.50	0.625	71	50	41	35	32	29	27	25	51	36	29	25	23	21	19	18	18	13	10	9	8	7	7	6
	1.000	181 53	128 38	105 31	91 27	- 81	- 74	69	64	130 38	92 27	75 22	65 19	58	53	49	46	45 13	32 9	26 8	23 7	20	19	17	16
2.00	1.000	136	- 30 - 96	79	68	61	- 56	51	- 48	97	69	56	49	43	40	37	- 34	34	24	20	17	- 15	- 14	- 13	- 12
2.00	1.375	257	182	149	129	115	105	97	91	184	130	106	92	82	75	69	65	64	45	37	32	29	26	24	23
	0.625	43	30	25	-	-	-	-	-	30	21	18	-	-	-	-	-	11	8	6	-	-	-	-	-
0.50	1.000	109	77	63	54	49	44	-	-	78	55	45	39	35	32	-	-	27	19	16	14	12	11	-	-
2.50	1.375	206	146	119	103	92	84	-	-	147	104	85	73	66	60	-	-	51	36	30	26	23	21	-	-
	1.750		236	192	167	149	136	-	-	238	168	137	119	106	97	-	-	83	59	48	42	37	34	-	-
	1.000	84	59	48	42	37	-	-	-	60	42	35	30	27	-	-	-	21	15	12	10	9	-	-	-
3.25	1.375	158	112	91	79	71	-	-	-	113	80	65	57	51	-	-	-	40	28	23	20	18	-	-	-
0.20	1.750	256	181	148	128	115	-	-	-	183	130	106	92	82	-	-	-	64	45	37	32	29	-	-	-
_	2.000	300		193	167	150	-	-	-	239	169	138	120	107	-	-	-	84	59	48	42	37	-	-	<u> </u>
Bore Ø	Rod	_					ength (ř					sic Le		1			1			sic Le			1
Ø	Ø		250	375	500	625	750	875	1000	125	250	375	500	625	750	875	1000	125		375	500	625	750	875	1000
	1.000	96	68	56	48	43	39	36	34	69	49	40	34	31	28	26	24	24	17	14	12	11	10	9	9
4.00	1.375	182	129	105	91	81 132	74 120	69	64 104	130 210	92	75	65	58 94	53 86	49 80	46	45 74	32 52	26 43	23	20	19	17	16
4.00	1.750	295 300	208	170 222	147 192	172	120	111 145	136	275	149 194	122 159	105 137	94 123	112	104	97	96	52 68	43 56	37 48	33 43	30 39	28 36	26 34
	2.500	300		300	300	269	245	227	213	300	300	248	215	123	175	162	152	150	106	87	75	67	61	57	53
	1.000	77	54	44	38	34	-	-	-	55	39	32	27	25	-	-	-	19	14	11	10	9	-	-	-
	1.375	146	103	84	73	65	59	55	51	104	73	60	52	46	42	39	37	36	26	21	18	16	15	14	13
	1.750	236	167	136	118	105	96	89	83	168	119	97	84	75	69	64	60	59	42	34	29	26	24	22	21
5.00	2.000	300		178	154	138	126	116	109	220	155	127	110	98	90	83	78	77	54	44	38	34	31	29	27
	2.500	300		278	241	215	196	182	170	300	243	198	172	154	140	130	121	120	85	69	60	54	49	45	43
	3.000	300		300	300	300	283	262	245	300	300	286	247	221	202	187	175	173	122	100	87	77	71	65	61
	3.500		300	300	300	300	300	300	300	300	300	300	300	300	275	255	238	236	167	136	118	105	96	89	83
	1.375 1.750	121 196	86	70 113	61 98	54 88	50 80	-	-	87 140	61 99	50 81	43 70	39 63	35 57	-	-	30 49	21 35	18 28	15 25	14 22	12 20	-	-
	2.000	257	181	148	128	115	105	-	-	183	130	106	92	82	75	-	-	64	45	37	32	22	20	-	-
6.00	2.500	300	-	231	200	179	164	-	-	286	202	165	143	128	117	-	-	100	71	58	50	45	41	-	-
	3.000	300		300	289	258	236	-	-	300	292	238	206	184	168	-	-	144	102	83	72	65	59	-	-
Ì	3.500	300	300	300	300	300	300	-	-	300	300	300	281	251	229	-	-	196	139	113	98	88	80	-	-
	4.000	300	300	300	300	300	300	-	-	300	300	300	300	300	299	-	-	257	181	148	128	115	105	-	-
	1.375	91	64	53	-	-	-	-	-	65	46	38	-	-	-	-	-	23	16	13	-	-	-	-	-
	1.750	147	104	85	74	66	-	-	-	105	74	61	53	47	-	-	-	37	26	21	18	16	-	-	-
	2.000	192	136	111	96	86	-	-	-	137	97	79	69	61	-	-	-	48	34	28	24	22	-	-	-
	2.500	300		174	150	134	-	-	-	215	152	124	107	96	-	-	-	75 108	53	43	38	34	-	-	-
8.00	3.000 3.500	300 300		250 300	216 295	194 264	-	-	-	300 300	219 298	179 243	155 210	138 188	-	-	-	108	77	62 85	54 74	48 66	-	-	-
	4.000	300		300	295	300	-	-	-	300		-	275	246	-	-	-	147	136	00 111	96	86	-	-	-
	4.000	300	300	300	300	300	-	-	-	300	300	300	300	300	-	-	-	244	172	141	122	109	-	-	-
	5.000	300	300	300	300	300	-	-	-	300	300	300	300	300	-	-	-	300	213	174	150	134	-	-	-
	5.000	300		300	300	300	-	-		300	300	300	300	300				300		210	182	163			

¹ Maximum operating pressure is limited for PL-2 Series Mounting Style MF1. Please refer to maximum operating pressure per bore in Pressure Ratings table located on the dimension page for PL-2 Series Mounting Style MF1.

PL-2 & PA-2 Series Maximum Basic Lengths (L_A) (all dimensions in inches) Notes: Operating Pressure column values are different for bore size ranges 1.00 - 3.25 and 4.00 - 8.00.

These tables can be used for PA-2 Series operating at 125 and 250 psi. Contact the factory to size piston rods for lower operating pressures, longer strokes and larger bore size PA-2 Series cylinders.

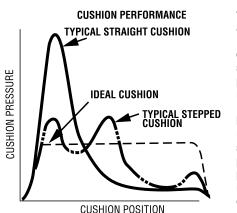
Bore	Rod										Rear	Fixed	Mou	nts (M	F2, MF	6, MX	2)								
Ø	Ø						ided R ength (dly Gu Isic Le				Ма	ax. Al			ed Ro asic Le		(L₄) at	psi:
		250	500	750	1000	1250	1500	1750	2000	250	500	750	1000	1250	1500	1750	2000	250	500	750	1000	1250	1500	1750	2000
	0.500	94	66	54	47	42	38	36	33	67	47	39	34	30	27	25	24	23	17	14	12	11	10	9	8
1.00	0.625	142	101	82	71	64	58	54	50	102	72	59	51	45	42	38	36	36	25	21	18	16	15	13	13
	0.625	98	69	57	49	44	40	37	35	70	50	41	35	31	29	27	25	25	17	14	12	11	10	9	9
1.50	1.000	230	162	133	115	103	94	87	81	164	116	95	82	73	67	62	58	57	41	33	29	26	23	22	20
	0.625	74	53	43	37	-	-	-	-	53	38	31	27	-	-	-	-	19	13	11	9	-	-	-	-
2.00	1.000	182	129	105	91	82	74	69	65	130	92	75	65	58	53	49	46	46	32	26	23	20	19	17	16
	1.375	300	218	178	154	138	126	116	109	220	155	127	110	98	90	83	78	77	54	44	38	34	31	29	27
	0.625	60	42	35	-	-	-	-	-	43	30	25	-	-	-	-	-	15	11	9	-	-	-	-	-
2.50	1.000	149	106	86	75	67	61	-	-	107	75	62	53	48	44	-	-	37	26	22	19	17	15	-	-
2.50	1.375	264	187	153	132	118	108	-	-	189	134	109	94	84	77	-	-	66	47	38	33	30	27	-	-
	1.750	300	268	219	189	169	155	-	-	270	191	156	135	121	110	-	-	95	67	55	47	42	39	-	-
	1.000	117	83	67	58	52	48	-	-	83	59	48	42	37	34	-	-	29	21	17	15	13	12	-	-
3.25	1.375	213	151	123	107	95	87	-	-	152	108	88	76	68	62	-	-	53	38	31	27	24	22	-	-
0.20	1.750	300	228	186	161	144	132	-	-	231	163	133	115	103	94	-	-	81	57	47	40	36	33	-	-
	2.000	300	279	228	197	176	161	-	-	282	199	163	141	126	115	-	-	99	70	57	49	44	40	-	-
Bore	Rod	Ма	ıx. Al	lowa	ble Ba	isic Le	ength ((L₄) at	psi:	Ma		lowa	ble Ba	isic Le	ength (L₄) at	psi:	Ma	ax. Al	lowa	ble Ba	asic Le	ength ((L₄) at	psi:
Ø	Ø	125	250	375	500	625	750	875	1000	125	250	375	500	625	750	875	1000	125	250	375	500	625	750	875	1000
	1.000	135	96	78	68	60	55	51	48	96	68	56	48	43	39	36	34	34	24	19	17	15	14	13	12
	1.375	251	178	145	126	112	103	95	89	180	127	104	90	80	73	68	64	63	44	36	31	28	26	24	22
4.00	1.750	300	279	228	197	176	161	149	139	281	199	163	141	126	115	106	100	99	70	57	49	44	40	37	35
	2.000	300	300	287	248	222	203	188	176	300	251	205	177	159	145	134	125	124	88	72	62	56	51	47	44
	2.500	300	300	300	300	300	285	264	247	300	300	288	249	223	204	188	176	174	123	101	87	78	71	66	62
	1.000	108	77	63	54	48	-	-	-	77	55	45	39	35	-	-	-	27	19	16	14	12	-	-	-
	1.375	203	144	117	102	91	83	77	72	145	103	84	73	65	59	55	51	51	36	29	25	23	21	19	18
	1.750	300	229	187	162	145	132	122	114	231	163	133	115	103	94	87	82	81	57	47	40	36	33	31	29
5.00	2.000	300	293	239	207	185	169	157	146	296	209	171	148	132	121	112	105	104	73	60	52	46	42	39	37
	2.500	300	300	300	300	272	248	230	215	300	300	250	217	194	177	164	153	152	107	88	76	68	62	57	54
	3.000	300	300	300	300	300	300	300	280	300	300	300	283	253	231	214	200	198	140	114	99	89	81	75	70
	3.500	300	300	300	300	300	300	300	300	300	300	300	300	300	277	256	240	237	168	137	119	106	97	90	84
	1.375	170	120	98	85	76	70	-	-	122	86	70	61	54	50	-	-	43	30	25	21	19	17	-	-
	1.750	274	193	158	137	122	112	-	-	195	138	113	98	87	80	-	-	68	48	39	34	31	28	-	-
	2.000	300	250	204	177	158	144	-	-	253	179	146	126	113	103	-	-	88	63	51	44	40	36	-	-
6.00	2.500	300	300	300	268	239	219	-	-	300	270	221	191	171	156	-	-	134	95	77	67	60	55	-	-
	3.000	300	300	300	300	300	298	-	-	300	300	300	261	233	213	-	-	183	129	105	91	82	75	-	-
	3.500	300	300	300	300	300	300	-	-	300	300	300	300	294	268	-	-	230	163	133	115	103	94	-	-
	4.000	300	300	300	300	300	300	-	-	300	300	300	300	300	300	-	-	272	192	157	136	122	111	-	-
	1.375	128	91	74			-	-	-	92	65	53			-	-	-	32	23	19			-	-	-
	1.750	207 270	146 191	120 156	104	93 121	-	-	-	148 193	105 136	85 111	74 96	66 86	-	-	-	52 67	37 48	30 39	26 34	23 30	-	-	-
	2.000	300	191 294	240	135 208	121	-	-	-	297	210	111	96	133	-	-	-	67 104	48	<u> </u>	34 52	47	-	-	-
	3.000	300	294 300	300	208	263	-	-	-	300	210	242	210	188	-	-	-	104	104	85	52 73	66	-	-	-
8.00	3.000	300	300	300	300	300	-	-	-	300	300	300	276	247	-	-	-	147	104	85	97	86	-	-	-
	4.000	300	300	300	300	300	-	-	-	300	300	300	300	300	-	-	-	241	171	139	121	108	-	-	-
	4.000	300	300	300	300	300	-	-	-	300	300	300	300	300	-	-	-	241	203	166	144	129	-	-	-
	4.500	300	300	300	300	300	-	-	-	300	300	300	300	300	-	-	-	300	203	100	165	129	-	-	+
	5.500	300	300	300	300	300	-	-	-	300	300	300	300	300	-	-	-	300	259	212	183	164	-	-	-
	0.000	300	300	300	300	300	-	-	-	1000	300	300	300	300	-	-	-	300	209	212	103	104	-	-	

PL-2 & PA-2 Series Maximum Basic Lengths (LA) (all dimensions in inches)

Notes: Operating Pressure column values are different for bore size ranges 1.00 - 3.25 and 4.00 - 8.00. These tables can be used for PA-2 Series operating at 125 and 250 psi. Contact the factory to size piston rods for lower operating pressures, longer strokes and larger bore size PA-2 Series cylinders.

Dam	Deal					/1404					Ennet	a d bad		. D'	M		
Bore	Rod Ø				Mounts	<u> </u>									Mounts	· · ·	1
Ø	Ø				Rigidly ble Basi										d Rod E th (L₄) a		
		250	500	750	1000	1250	1500	1750	2000	250	500	750	1000	1250	1500	1750	2000
1.00	0.500	47	33	27	23	21	19	18	17	34	24	20	17	15	14	13	12
1.00	0.625	71	50	41	36	32	29	27	25	53	38	31	27	24	22	20	19
1.50	0.625	49	35	28	25	22	20	19	17	35	25	20	18	16	14	13	13
1.50	1.000	115	81	66	57	51	47	43	41	91	64	52	45	41	37	34	32
	0.625	37	26	21	19	-	-	-	-	27	19	15	13	-	-	-	-
2.00	1.000	91	65	53	46	41	37	34	32	68	48	39	34	30	28	26	24
	1.375	154	109	89	77	69	63	58	54	129	91	74	64	58	53	49	45
	0.625	30	21	17	-	-	-	-	-	21	15	12	-	-	-	-	-
2.50	1.000	75	53	43	37	33	31	-	-	54	38	31	27	24	22	-	-
2.00	1.375	132	93	76	66	59	54	-	-	103	73	59	51	46	42	-	-
	1.750	189	134	109	95	85	77	-	-	167	118	96	83	75	68	-	-
	1.000	58	41	34	29	26	24	-	-	42	30	24	21	19	17	-	-
3.25	1.375	107	75	62	53	48	44	-	-	79	56	46	40	35	32	-	-
0.20	1.750	161	114	93	81	72	66	-	-	128	91	74	64	57	52	-	-
	2.000	197	139	114	99	88	80	-	-	167	118	97	84	75	68	-	-
Bore	Rod		Max.	Allowa	ble Basi	c Leng	th (L₄) a	t psi:			Max.	Allowa	ole Bas	ic Leng	th (L₄) a	t psi:	
Ø	Ø	125	250	375	500	625	750	875	1000	125	250	375	500	625	750	875	1000
	1.000	68	48	39	34	30	28	26	24	48	34	28	24	22	20	18	17
	1.375	126	89	73	63	56	51	48	44	91	64	53	45	41	37	34	32
4.00	1.750	197	139	114	99	88	80	74	70	147	104	85	74	66	60	56	52
	2.000	248	176	143	124	111	101	94	88	192	136	111	96	86	79	73	68
	2.500	300	247	201	174	156	142	132	123	300	213	174	150	134	123	114	106
	1.000	54	38	31	27	24	-	-	-	38	27	22	19	17	-	-	-
	1.375	102	72	59	51	45	41	38	36	73	51	42	36	33	30	27	26
	1.750	162	114	93	81	72	66	61	57	118	83	68	59	53	48	45	42
5.00	2.000	207	146	120	104	93	85	78	73	154	109	89	77	69	63	58	54
	2.500	300	215	175	152	136	124	115	107	241	170	139	120	108	98	91	85
	3.000	300	280	229	198	177	162	150	140	300	245	200	173	155	141	131	122
	3.500	300	300	274	237	212	194	179	168	300	300	272	236	211	192	178	167
	1.375	85	60	49	43	38	35	-	-	61	43	35	30	27	25	-	-
	1.750	137	97	79	68	61	56	-	-	98	69	57	49	44	40	-	-
	2.000	177	125	102	88	79	72	-	-	128	91	74	64	57	52	-	-
6.00	2.500	268	189	155	134	120	109	-	-	200	142	116	100	90	82	-	-
	3.000	300	258	211	183	163	149	-	-	289	204	167	144	129	118	-	-
	3.500	300	300	266	230	206	188	-	-	300	278	227	196	176	160	-	-
	4.000	300	300	300	272	243	222	-	-	300	300	296	257	229	209	-	-
	1.375	64	45	37	-	-	-	-	-	45	32	26	-	-	-	-	-
	1.750	104	73	60	52	46	-	-	-	74	52	43	37	33	-	-	-
	2.000	135	95	78	67	60	-	-	-	96	68	56	48	43	-	-	-
	2.500	208	147	120	104	93	-	-	-	150	106	87	75	67	-	-	-
8.00	3.000	294	208	169	147	131	-	-	-	216	153	125	108	97	-	-	-
	3.500	300	273	223	193	173	-	-	-	295	208	170	147	132	-	-	-
	4.000	300	300	278	241	216	-	-	-	300	272	222	192	172	-	-	-
	4.500	300	300	300	287	257	-	-	-	300	300	281	244	218	-	-	-
	5.000	300	300	300	300	295	-	-	-	300	300	300	300	269	-	-	-
	5.500	300	300	300	300	300	-	-	-	300	300	300	300	300	-	-	-

¹ Maximum operating pressure is limited for PL-2 Series Mounting Style MPU3. Please refer to maximum operating pressure per bore in Pressure Ratings table located on the dimension page for PL-2 Series Mounting Style MPU3.


NOTES

An Introduction to Cushioning

Cushioning is recommended as a means of controlling the deceleration of masses, or for applications where piston speed is in excess of 4 in/sec and the piston will make full stroke. Cushioning extends cylinder life and reduces undesirable noise and hydraulic shock. Built-in "cushions" are optional and can be supplied at the head and cap ends of a cylinder without affecting its envelope or mounting dimensions.

Standard Cushioning

Ideal cushion performance shows an almost uniform absorption of energy along the cushioning length, as shown. Many forms of cushioning exist, and each has its own specific merits and advantages.

In order to cover the majority of applications, PH-2/PH-3 cylinders are supplied with profiled cushioning as standard. Final speed may be adjusted using the cushion screw. The performance of profiled cushioning is indicated on the diagram.

Note: Cushion performance will be affected by the use of water or high water based fluids. Please consult factory for details.

Cushion Length

Where specified, PH-2/PH-3 cylinder incorporates the longest cushion sleeve and spear that can be accommodated within the standard envelope without reducing the rod bearing and piston bearing length. See cushion lengths on the next page. Cushions are adjustable via recessed needle valves.

Cushion Calculation

The charts on the next page show the energy absorption capacity for each bore/rod combination at the head (annulus) and the cap (full bore) ends of cylinder. The charts are valid for piston velocities within a range of 0.33 to 1 ft/s. For velocities between 1ft/s and 1.64 ft/s the energy values derived from the charts should be reduced by 25%. For velocities less than 0.33 ft/s where large masses are involved, and for velocities greater than 1.60 ft/s, a special cushion profile may be required. Please consult the factory for details.

The cushion capacity of the head end is less than the cap, and reduces to zero at high drive pressures due to the pressure intensification effect across the piston.

The energy absorption capacity of the cushion decreases with drive pressure.

Formula

Cushioning calculations are based on the formula $E=(1/2) mv^2$ for horizontal applications. For inclined or vertically downward or upward applications, this is modified to:

 $E = (1/2)mv^2 + mg(L/12) x sin(a)$ (for inclined or vertically downward direction of mass)

 $E = (1/2)mv^2 - mg(L/12) x sin(a)$ (for inclined vertically upward direction of mass)

where:

- E = energy absorbed in lb-ft
- g = acceleration due to gravity = 32.2 ft/s²
- v = velocity in ft/s
- L = length of cushion in inches
- m = mass of load in slug (including piston, rod and rod end accessories.
- a = angle to the horizontal in degrees
- p = pressure in psi

Example:

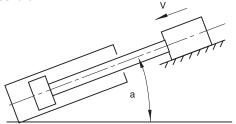
The following example shows how to calculate the energy developed by masses moving in a straight line. For non-linear motion, other calculations are required; please consult the factory. The example assumes that the bore and rod diameter are already appropriate for the application. The effects of friction on the cylinder and load have been ignored.

Selected bore/rod 6" bore x 2 1/2" rod (No. 1 rod)

Cushion at the cap end.

```
Pressure = 2,500 psi
```

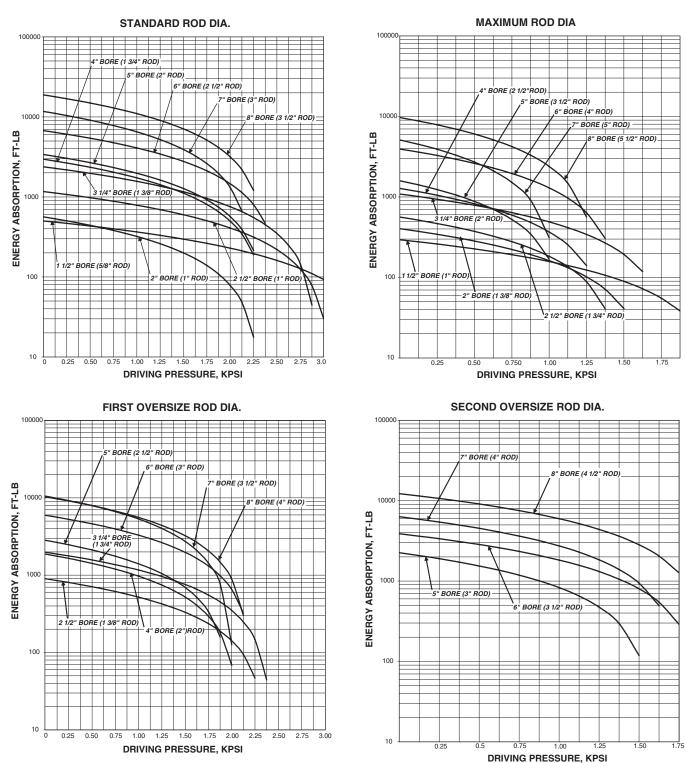
Mass = 685 slugs = weight in lb / (32.2 ft/s²)


Velocity = 1.3 ft/s

```
Cushion length = 1.313 inch
```

```
a = 45^{\circ}
```

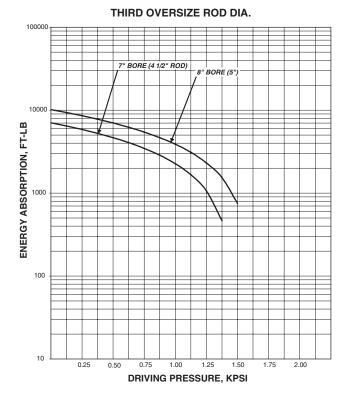
```
Sin(a) = 0.70
E = (1/2)mv^2 + mal
```


 $E = (1/2)mv^{2} + mgl/12 x Sin (a)$ = (1/2) x 685 x 1.3² + 685 x 32.2 x 1.313/12 x 0.70 = 2,268 ft-lb

Note: In the above example velocity is greater than 1 ft./s. Therefore, a de-rating factor of 0.75 must be applied to the calculated value of E. Applying this correction factor will increase the energy value to 3024 lb-ft (2268/0.75 = 3024 lb-ft). A review of the graph for the cap end cushion of a 6 inch bore x $21/2^{"}$ rod cylinder operating at 2500 psi indicates that it can absorb approximately 3200 lb-ft maximum of energy. Since 3024 lb-ft is less than the maximum allowable of 3200 lb-ft, the cylinder can be applied as indicated. If the calculated energy exceeds the value shown on the curve, select a larger bore cylinder and/or reduce the operating pressure and recalculate the energy. Compare the newly calculated energy value to the appropriate curve to ensure it does not exceed the maximum allowable energy.

BORE	ROD	CUSHION LE	NGTH (MINIMUM)
	DIA.	HEAD	САР
1.5	0.625	0.924	1.000
	1.000	0.927	1.000
2	1.000	0.927	0.938
	1.375	0.925	0.938
2.5	1.000	0.927	0.938
	1.750	0.928	0.938
	1.375	0.925	0.938
3.25	1.375	1.175	1.125
	2.000	0.862	1.125
	1.750	1.178	1.125
4	1.750	1.178	1.063
	2.500	0.869	1.063
	2.000	0.862	1.063
5	2.000	0.862	0.938
	3.500	0.869	0.938
	2.500	0.869	0.938
	3.000	0.869	0.938
6	2.500	1.119	1.313
	4.000	1.119	1.313
	3.000	1.119	1.313
	3.500	0.869	1.313
7	3.000	1.619	1.750
	5.000	1.496	1.750
	3.500	1.619	1.750
	4.000	1.119	1.750
	4.500	1.496	1.750
8	3.500	1.869	1.813
	5.500	1.745	1.813
	4.000	1.119	1.813
	4.500	1.496	1.813
	5.000	1.496	1.813

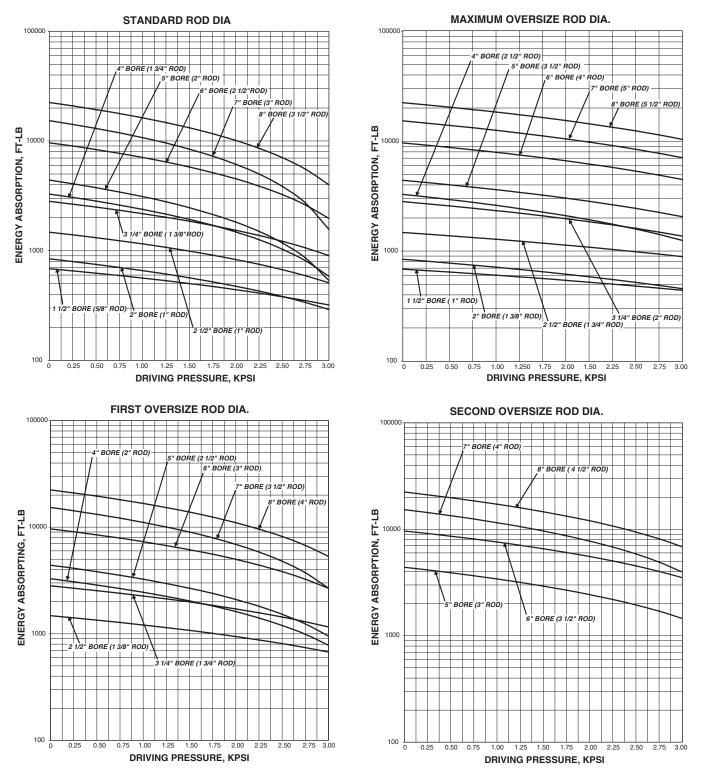
The cushion energy absorption data shown below is based on the maximum fatigue-free pressure developed in the tube. For application with a life cycle of less than 10⁶ cycles, greater energy absorption figures can be applied. Please consult the factory if further information is required.



Head End

Schrader Bellows® Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

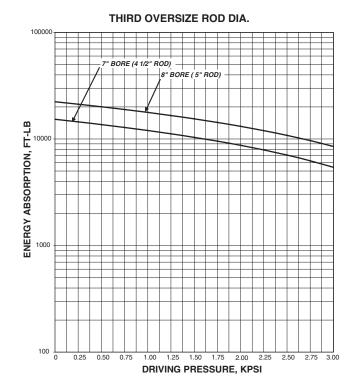
The cushion energy absorption data shown below is based on the maximum fatigue-free pressure developed in the tube. For application with a life cycle of less than 10⁶ cycles, greater energy absorption figures can be applied. Please consult the factory if further information is required.


Head End

The cushion energy absorption data shown below is based on the maximum fatigue-free pressure developed in the tube. For application with a life cycle of less than 10⁶ cycles, greater

energy absorption figures can be applied. Please consult the factory if further information is required.

Cap End



C

Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois

The cushion energy absorption data shown below is based on the maximum fatigue-free pressure developed in the tube. For application with a life cycle of less than 10⁶ cycles, greater energy absorption figures can be applied. Please consult the factory if further information is required.

Acceleration and Deceleration Force Determination

The uniform acceleration force factor chart and the accompanying formula can be used to rapidly determine the forces required to accelerate and decelerate a cylinder load. To determine these forces, the following factors must be known: total weight to be moved, maximum piston speed, distance available to start or stop the weight (load), direction

Nomenclature

- V = Velocity in feet per minute
- S = Distance in inches
- F = Force in lbs.
- W = Weight of load in lbs. Force factor g =
- = Friction of load on machine ways in lbs.

To determine the force factor "g" from the chart, locate the intersection of the maximum piston velocity line and the line representing the available distance. Project downward to locate "g" on the horizontal axis. To calculate the "g" factor for distances and velocities exceeding those shown on the chart, the following formula can be used:

 $g = v^2/s \times .0000517$

Example: Horizontal motion of a free moving 6,000 lb. load is required with a distance of $1/2^{"}$ to a maximum speed of 120 feet per minute. Formula (1) F = Wg should be used.

F = 6,000 pounds x 1.50 (from chart) = 9,000 lbs.

Assuming a maximum available pump pressure of 1,000 psi, a 4" bore cylinder should be selected, operating on push stroke at approximately 750 psi pressure at the cylinder to allow for pressure losses from the pump to the cylinder.

Assume the same load to be sliding on ways with a coefficient of friction of 0.15. The resultant friction load would be 6,000 x 0.15 = 900 lbs. Formula (2) F = Wg + f should be used.

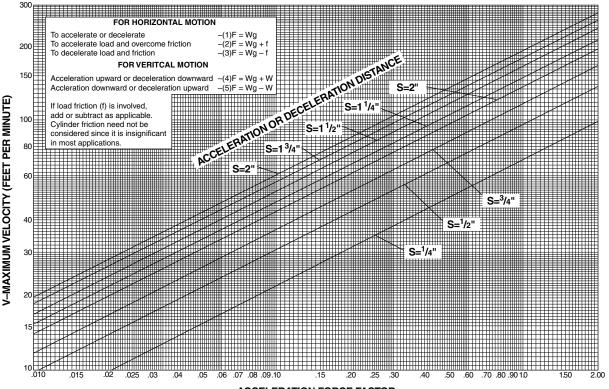
= 6,000 lbs. x 1.5 (from chart) + 900 = 9,900 lbs. F

Again allowing 750 psi pressure at the cylinder, a 5" bore cylinder is indicated.

of movement, i.e. horizontal or vertical, and load friction. By use of the known factors and the "g" factor from chart, the force necessary to accelerate or decelerate a cylinder load may be found by solving the formula (as shown in chart below) application to a given set of conditions.

Example: Horizontal deceleration of a 5000 pound load is required by using a 1" long cushion in a 5" bore cylinder having a 13/4" diameter piston rod. Cylinder bore area (19.64 sq. in.) minus the rod area results in a minor area of 17.23 sq. in. at head end of cylinder. A pump delivering 500 psi at the cylinder is used to push the load at 120 feet per minute. Friction coefficient is 0.15 or 750 lbs.

In this example, the total deceleration force is the sum of the force needed to decelerate the 5,000 lb. load, and the force required to counteract the thrust produced by the pump.


- W = Load in lbs. = 5000
- S = Deceleration distance in inches = 1" V
- = Maximum piston speed in feet per minute = 120
- .74 (from chart) g =

= 750 pounds Use formula (3) F = Wg - f

 $(F = Wg - f) = (F = 5000 \times .74 - 750) = 2,950 \text{ lbs.}$

The pump is delivering 500 psi acting on the 19.64 sq. in. piston area producing a force (F2) of 9820 lbs. This force must be included in our calculations. Thus F + F2 = 2950 + 9820 = 12,770 lbs. total force to be decelerated.

The total deceleration force is developed by the fluid trapped between the piston and the head. The fluid pressure is equal to the force (12,770 lbs.) divided by the minor area (17.23 sq. in.) equals 741 psi. This pressure should not exceed the non-shock rating of the cylinder. Cushioning practice is to select a "g" factor between .2 and 1.5.

g-ACCELERATION FORCE FACTOR

One of the factors involved in determining the speed of a hydraulic cylinder piston is fluid flow in connecting lines, generally measured in gallons per minute, introduced to, or expelled from, cap end cylinder port. (Due to piston rod displacement, the flow at head end port will be less than at cap end.) Fluid velocity, however, is measured in feet per second. In connecting lines this velocity should generally be limited to 15 feet per second to minimize fluid turbulence, pressure loss and hydraulic shock.

Piston speed for cylinders can be calculated from data shown in **table b-5**. The table shows fluid velocity flow for major cylinder

Table b-5

areas as well as for the net area at the rod end for cylinders 1" through 14" bore size.

If desired piston speed results in fluid flow in excess of 15 feet per second in connecting lines, consider the use of larger lines up to cylinder port, using either oversized ports or two ports per cap.

If heavy loads are involved or piston speeds are in excess of 20 feet per minute and the piston will make a full stroke, cushions are recommended. Cushions increase cylinder life and reduce undesirable noise.

	Pistor	n Rod			uid cement		Thro		d Velocity a Heavy F				eed	
Cylinder Bore	Dia.	Area	Cylinder Net Area	at 10 Ft.	Per Min. Velocity			For Series	s PH-2 Cy rst to Lef	linders S	Standard	Port Size		
(Inches)	(Inches)	(Sq. In.)	(Sq. In.)	GPM	CFM	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2
	0	0	.785	.41	.054	1.82	.92	.56	.30	.183	.102	.074	.045	_
1	1/ ₂	.196	.589	.30	.041	1.33	.68	.41	.21	.134	.075	.055	.033	—
	⁵ /8	.307	.478	.16	.033	.71	.36	.22	.12	.071	.040	.029	.017	—
	0	.0	1.77	.92	.123	4.09	2.09	1.259	.680	.410	.230	.167	.100	—
1 ¹ / ₂	⁵ /8	.307	1.46	.76	.101	3.38	1.73	1.040	.562	.338	.190	.138	.082	
	1	.785	.98	.51	.068	2.27	1.16	.699	.378	.228	.128	.093	.055	
	0	0	3.14	1.63	.218	7.27	3.71	2.238	1.209	.728	.408	.296	.177	
2	⁵ /8	.307	2.84	1.48	.197	6.56	3.35	2.019	1.091	.657	.368	.267	.160	-
-	1	.785	2.36	1.23	.164	5.45	2.79	1.678	.907	.546	.306	.222	.133	
	1 ³ /8	1.485	1.66	.86	.115	3.84	1.96	1.180	.638	.384	.215	.156	.094	
	0	0	4.91	2.55	.341	11.36	5.80	3.496	1.890	1.138	.638	.463	.277	-
	⁵ /8	.307	4.60	2.39	.319	10.65	5.44	3.278	1.771	1.067	.598	.434	.260	-
2 ¹ / ₂	1	.785	4.12	2.14	.286	9.54	4.87	2.937	1.587	.956	.536	.389	.233	-
	1 ³ /8	1.485	3.42	1.78	.237	7.93	4.05	2.439	1.318	.794	.445	.323	.193	
	1 ³ / ₄	2.405	2.50	1.30	.174	5.96	2.96	1.783	.963	.580	.325	.236	.141	<u> </u>
	0	0	8.30	4.31	.576	19.20	9.81	5.909	3.193	1.923	1.078	.783	.468	-
	1	.785	7.51	3.90	.521	17.38	8.88	5.349	2.891	1.741	.976	.708	.424	<u> </u>
3 ¹ / ₄	1 ³ /8	1.485	6.81	3.54	.473	15.77	8.05	4.851	2.622	1.579	.885	.642	.384	-
	1 ³ / ₄	2.405	5.89	3.06	.409	13.64	6.96	4.196	2.268	1.366	.765	.556	.333	-
	2	3.142	5.15	2.68	.357	11.93	6.09	3.671	1.984	1.195	.670	.486	.291	
	0	0	12.57	6.53	.872	29.09	14.85	8.95	4.84	2.91	1.63	1.19	.709	
	1	.785	11.78	6.12	.818	27.27	13.93	8.39	4.54	2.73	1.53	1.11	.665	
4	1 ³ /8	1.485	11.08	5.76	.769	25.65	13.10	7.89	4.27	2.57	1.44	1.05	.625	
	1 ³ / ₄	2.405	10.16	5.28	.705	23.52	12.01	7.24	3.91	2.36	1.32	.96	.574	
	2	3.142	9.42	4.89	.654	21.82	11.14	6.71	3.63	2.19	1.22	.89	.532	
	2 ¹ / ₂	4.909	7.66	3.98	.532	17.73	9.05	5.45	2.95	1.78	1.00	.72	.432	
	0	0	19.64	10.20	1.363	45.45	23.21	13.99	7.56	4.55	2.55	1.85	1.108	
	1	.785	18.85	9.79	1.308	43.64	22.28	13.43	7.26	4.37	2.45	1.78	1.064	
	1 ³ /8	1.485	18.15	9.43	1.260	42.01	21.45	12.93	6.99	4.21	2.36	1.71	1.024	
5	1 ³ /4	2.405	17.23	8.95	1.196	39.88	20.37	12.27	6.63	3.99	2.24	1.63	.973	<u> </u>
	2	3.142	16.49	8.57	1.144	38.18	19.50	11.75	6.35	3.82	2.14	1.56	.931	
	2 ¹ / ₂	4.909	14.73	7.65	1.022	34.09	17.41	10.49	5.67	3.41	1.91	1.39	.831	
	3	7.069	12.57	6.53	.872	29.09	14.85	8.95	4.84	2.91	1.63	1.19	.709	
	3 ¹ / ₂	9.621	10.01	5.21	.695	23.18	11.84	7.13	3.86	2.32	1.30	.95	.565	+
	0	0	28.27	14.69	1.962	65.45	33.42	20.14	10.88	6.55	3.67 3.48	2.67	1.596	
	1 ³ /8	1.485	26.79	13.92	1.859	62.01	31.67	19.08	10.31	6.21		2.53	1.512	
6	1 ³ /4	2.405	25.87	13.44	1.795	59.88	30.58	18.43	9.96	5.60	3.36	2.44	1.460	
U	2 2 ¹ /2	3.142 4.909	25.13	13.06 12.14	1.744 1.622	58.18 54.1	29.71 27.6	17.90 16.64	9.67 8.99	5.83 5.42	3.27 3.04	2.37 2.20	1.418	
	2 ¹ /2	4.909	23.37	12.14	1.622	49.1	27.6	15.10	8.99	5.42 4.92	2.76	2.20	1.32	
	3 3 ¹ /2	9.621	21.21	9.69	1.294	49.1	25.1	13.29	7.18	4.92	2.76	2.00	1.20	
			18.65			-			-	-	2.42	-	1.05	-
	4	12.566	15.71	8.16	1.09	36.4	18.6	11.19	6.05	3.64	2.04	1.48	.89	—

Table b-5 (cont.)

Cylinder Bore (Inches)			Cylinder	Displa at 10 Ft.	uid cement Per Min.		Th	rough Ex For Seri	tra Heavy es PH-2	/ Pipe at Cylinders	s Standaı	. Piston S rd Port Si	Speed. ze	
Bore	Dia.	Area	Net Area		Velocity		0 (0			1	avy Black			
(Inches)	· ,	(Sq. In.)	(Sq. In.)	GPM	CFM	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	2 1/2
-	0	0	38.49	20.00	2.671	89.1	45.5	27.41	14.81	8.92	5.00	3.63	2.17	<u> </u>
-	1 ³ /8	1.485	37.00	19.22	2.568	85.7	43.7	26.35	14.24	8.58	4.81	3.49	2.09	<u> </u>
-	1 ³ /4	2.405	36.08	18.74	2.504 2.453	83.5	42.7 41.8	25.70 25.17	13.89 13.60	8.36 8.19	4.69 4.59	3.40 3.33	2.04	
-	2 2 ¹ /2	4.909	35.34 33.58	18.36 17.44	2.453	81.8 77.7	39.7	23.92	12.92	7.78	4.39	3.33	1.90	
7	3	7.069	33.58	16.32	2.330	72.7	37.1	22.38	12.92	7.28	4.08	2.96	1.90	<u> </u>
-	3 ¹ /2	9.621	28.86	14.99	2.003	66.8	34.1	20.56	11.11	6.69	3.75	2.72	1.63	
-	4	12.566	25.92	13.47	1.799	60.0	30.6	18.46	9.98	6.01	3.37	2.45	1.46	_
-	4 ¹ / ₂	15.904	22.58	11.73	1.567	52.3	26.7	16.08	8.69	5.23	2.93	2.12	1.28	
-	5	19.635	18.85	9.79	1.308	43.6	22.3	13.43	7.26	4.37	2.45	1.78	1.06	_
	0	0	50.27	26.12	3.489	116.4	59.4	35.80	19.35	11.65	6.53	4.74	2.84	1.977
	1 ³ /8	1.485	48.78	25.34	3.385	112.9	57.7	34.74	18.78	11.31	6.34	4.60	2.75	1.918
	1 ³ / ₄	2.405	47.86	24.86	3.321	110.8	56.6	34.09	18.42	11.09	6.22	4.51	2.70	1.882
	2	3.142	47.12	24.48	3.270	109.1	55.7	33.56	18.14	10.92	6.12	4.45	2.66	1.853
	2 ¹ / ₂	4.909	45.36	23.57	3.149	105.0	53.61	32.31	17.46	10.51	5.892	4.278	2.560	1.784
8	3	7.069	43.20	22.44	2.998	100.0	51.06	30.77	16.63	10.01	5.612	4.074	2.438	1.699
-	3 ¹ / ₂	9.621	40.65	21.12	2.821	94.1	48.04	28.95	15.65	9.42	5.279	3.834	2.294	1.598
-	4	12.566	37.70	19.59	2.616	87.3	44.56	26.85	14.51	8.74	4.897	3.556	2.128	1.483
-	4 ¹ / ₂	15.904	34.36	17.85	2.385	79.5	40.62	24.47	13.23	8.20	4.464	3.241	1.939	1.351
-	5 5 ¹ /2	19.635 23.758	30.63	15.91 13.77	2.126	70.9	36.21 31.33	21.82 18.88	11.79 10.20	7.10 6.15	3.979 3.444	2.889 2.500	1.729 1.496	1.205
	0 0	0	26.51 78.54	40.80	1.840 5.451	61.4 181.8	92.84	55.94	30.23	18.21	10.203	7.408	4.433	3.089
-	1 ³ /4	2.405	76.14	39.56	5.284	176.2	92.84 89.99	54.23	29.31	17.65	9.890	7.181	4.433	2.994
-	2	3.142	75.40	39.17	5.233	176.2	89.12	53.70	29.02	17.48	9.795	7.112	4.255	2.965
-	2 ¹ /2	4.909	73.63	38.25	5.110	174.5	87.03	52.44	28.34	17.07	9.565	6.945	4.156	2.896
-	3	7.069	71.47	37.13	4.960	165.4	84.48	50.91	27.51	16.57	9.284	6.741	4.034	2.811
	3 ¹ / ₂	9.621	68.92	35.80	4.783	159.5	81.47	49.09	26.53	15.98	8.953	6.501	3.890	2.710
10	4	12.566	65.97	34.27	4.578	152.7	77.98	46.99	25.39	15.29	8.570	6.223	3.724	2.595
	4 ¹ / ₂	15.904	62.64	32.54	4.347	145.0	74.04	44.61	24.11	14.52	8.137	5.908	3.535	2.463
	5	19.635	58.91	30.60	4.088	136.4	69.63	41.96	22.67	13.65	7.652	5.556	3.325	2.317
	5 ¹ /2	23.758	54.78	28.46	3.802	126.8	64.75	39.02	21.09	12.70	7.116	5.167	3.092	2.154
_	6	28.274	50.27	26.12	3.489	116.4	59.42	35.80	19.35	11.65	6.530	4.741	2.837	1.977
-	6 ¹ /2	33.183	45.36	23.57	3.148	105.0	53.6	32.31	17.46	10.52	5.89	4.278	2.560	1.784
	7	38.485	40.06	20.81	2.780	92.7	47.4	28.53	15.42	9.29	5.20	3.778	2.261	1.575
-	0	0	113.10	58.76	7.849	261.8	133.7	80.55	43.53	26.22	14.69	10.668	6.383	4.448
-	2	3.142	109.96	57.12	7.631	254.5	130.0	78.32	42.32	25.49	14.28	10.371	6.206	4.324
-	2 ¹ / ₂	4.909	108.19	56.21	7.508 7.359	250.4	127.9	77.06	41.64	25.08 24.58	14.05 13.77	10.205	6.106 5.984	4.255
-	3 ¹ /2	9.621	106.03 103.48	55.08 53.76	7.182	245.4 239.5	125.3 122.3	75.52 73.70	40.81 39.83	23.99	13.44	10.001 9.760	5.840	4.170 4.069
-	4	12.566	100.53	52.23	6.977	239.5	118.8	71.60	38.70	23.30	13.06	9.482	5.674	3.954
-	4 ¹ /2	15.904	97.19	50.49	6.745	225.0	114.9	69.23	37.41	22.53	12.63	9.168	5.486	3.822
12	5	19.635	93.46	48.55	6.486	216.4	110.5	66.57	35.98	21.67	12.14	8.816	5.275	3.676
	5 ¹ /2	23.758	89.34	46.41	6.200	206.8	105.6	63.63	34.39	20.71	11.61	8.427	5.042	3.513
-	6	28.274	84.82	44.06	5.887	196.4	100.3	60.42	32.65	19.66	11.02	8.001	4.787	3.336
	6 ¹ / ₂	33.183	79.92	41.52	5.547	185.0	94.5	56.92	30.76	18.53	10.38	7.538	4.510	3.143
ľ	7	38.485	74.61	38.77	5.179	172.7	88.2	53.14	28.72	17.30	9.69	7.038	4.211	2.934
[7 ¹ / ₂	44.179	68.92	35.80	4.783	159.5	81.5	49.09	26.53	15.98	8.95	6.501	3.890	2.710
[8	50.266	62.83	32.64	4.360	145.4	74.3	44.75	24.19	14.57	8.16	5.926	3.546	2.471
	8 ¹ / ₂	56.745	56.35	29.27	3.911	130.5	66.6	40.14	21.69	13.06	7.32	5.315	3.181	2.216
Ļ	0	0	153.94	79.97	10.683	356.3	182.0	109.6	59.25	35.68	20.00	14.52	8.688	6.054
Ļ	2 ¹ / ₂	4.909	149.03	77.42	10.343	345.0	176.2	106.2	57.36	34.55	19.36	14.06	8.411	5.861
Ļ	3	7.069	146.87	76.30	10.193	340.0	173.6	104.6	56.53	34.05	19.08	13.85	8.289	5.776
14	3 ¹ /2	9.621	144.32	74.97	10.016	334.1	170.6	102.8	55.55	33.45	18.75	13.61	8.145	5.676
	4	12.566	141.37	73.44	9.811	327.3	167.1	100.7	54.42	32.77	18.37	13.33	7.979	5.560
ŀ	4 ¹ / ₂	15.904	138.03	71.71	9.579	319.5	163.2	98.3	53.13	32.00	17.93	13.02	7.791	5.428
	5	19.635	134.30	69.77	9.320	310.9 301.3	158.8 153.9	95.7 92.7	51.70 50.11	31.13 30.18	17.45 16.91	12.67 12.28	7.580 7.347	5.282 5.120

Flow Velocity and Pressure Drop Data for Hydraulic Systems

The chart below may be used to calculate pressure loss in connecting lines at various flow velocities. The data is useful when determining hydraulic cylinder size and port size for applications where cylinder force and speed requirements are known.

S = Standard (Schedule 40) Pipe

H = Extra Strong (Schedule 80) Pipe

EH = Double Extra Strong Pipe

Tabulations based on a hydraulic oil having a viscosity of 155 SSU at 100°F — specific gravity of .87.

To determine tubing or hose losses, use I.D. closest to tubing or hose I.D.

Pressure drop does not vary with operating pressure. Avoid high pressure losses in low pressure systems. Use largest pipe size practical. Avoid flow velocities greater than 15 Ft./Sec. to reduce hydraulic line shock.

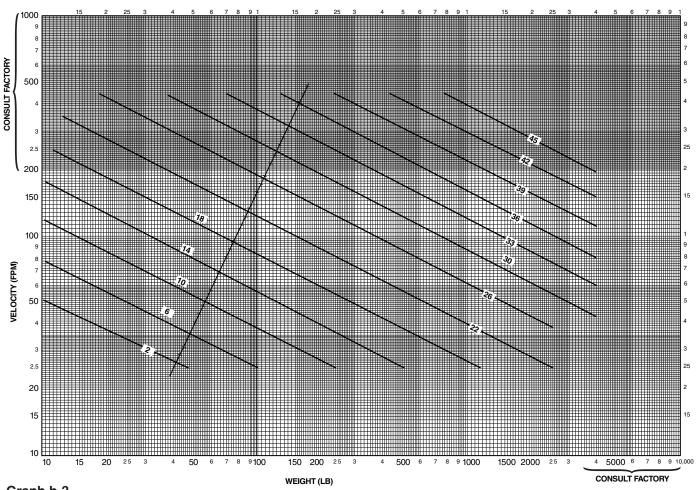
		Clean St	eel Pipe				Pressu	,			re Inch P city (Feet		Length) ii ond)	n Pipes	
	ninal ze	O.D.	I.D.	Wall Thick- ness	I.D. Area	5 (f	ps) Gal.	7 (f	ps) Gal.	10 (fps) Gal.	15 ((fps) Gal.	20 ((fps) Gal.
Inc	hes	Inches	Inches	Inch	Sq. In.	Loss	Min.	Loss	Min.	Loss	Min.	Loss	Min.	Loss	Min.
	S		1.049	0.133	0.863	0.10	13.45	0.13	18.85	0.34	26.90	0.57	40.35	1.42	53.80
1	Н	1.315	0.957	0.179	0.719	0.11	11.21	0.15	15.70	0.24	22.42	0.62	33.63	1.23	44.84
	EH		0.599	0.358	0.282	0.26	4.39	0.37	6.16	0.53	8.78	0.67	13.17	2.25	17.56
	S		1.380	0.140	1.496	0.05	23.35	0.08	31.68	0.25	46.70	0.39	70.05	0.78	93.40
1 1/4	Н	1.660	1.278	0.191	1.280	0.07	19.95	0.09	28.06	0.26	39.90	0.44	58.85	0.85	79.80
	EH		0.896	0.382	0.630	0.13	9.83	0.16	13.75	0.24	19.66	0.71	29.49	1.35	39.32
	S		1.610	0.145	2.036	0.04	31.75	0.11	44.49	0.19	63.50	0.33	95.25	0.64	127.00
1 1/2	Н	1.900	1.500	0.200	1.767	0.04	27.55	0.08	38.62	0.21	55.10	0.36	82.65	0.71	110.20
	EH		1.100	0.400	0.950	0.09	14.81	0.09	20.75	0.32	29.62	0.51	44.43	1.05	59.24
	S		2.067	0.154	3.355	0.04	52.30	0.08	73.45	0.14	104.60	0.24	159.20	0.48	209.20
2	Н	2.375	1.939	0.218	2.953	0.03	46.00	0.09	64.60	0.15	92.00	0.26	138.00	0.52	184.00
	EH		1.503	0.436	1.773	0.04	27.65	0.12	38.78	0.21	55.30	0.36	82.95	0.72	110.60
	S		2.469	0.203	4.788	0.03	74.75	0.07	104.80	0.11	149.50	0.20	224.25	0.37	299.00
2 1/2	Н	2.875	2.323	0.276	4.238	0.04	66.11	0.07	92.60	0.12	132.22	0.21	198.33	0.39	164.44
	EH		1.771	0.552	2.464	0.03	38.45	0.10	53.40	0.17	76.90	0.30	115.35	0.59	153.80

		Clean St	eel Pipe			Square Pipes a	sure Loss Inch Per at Averag (Feet per	Foot Le	ngth) in /elocity	E		t Straight Circuit C			et)
						25 (fps)	30 (fps)		Tee			Elbow	
Nom	ninal			Wall Thick-	I.D.								Std.	Sq.	45°
Si	ze	O.D.	I.D.	ness	Area		Gal.		Gal.				Ē		\land
Inc	hes	Inches	Inches	Inch	Sq. In.	Loss	Min.	Loss	Min.				J		EY
	S		1.049	0.133	0.863	1.64	67.25	2.24	80.70	5.7	1.7	5.7	2.6	5.7	1.2
1	Н	1.315	0.957	0.179	0.719	1.84	56.05	2.93	67.26	5.2	1.6	5.2	2.5	5.2	1.1
	EH		0.599	0.358	0.282	3.29	21.95	3.30	26.34	3.0	1.0	3.0	1.5	3.0	.75
	S		1.380	0.140	1.496	1.18	116.75	1.47	140.10	7.5	2.4	7.5	3.7	7.5	1.6
1 1/4	Н	1.660	1.278	0.191	1.280	1.27	99.75	1.80	119.70	7.0	2.1	7.0	3.5	7.0	1.5
	EH		0.896	0.382	0.630	2.01	49.15	2.76	58.98	4.9	1.5	4.9	2.3	4.9	1.05
	S		1.610	0.145	2.036	0.96	158.75	1.26	190.50	9.0	2.8	9.0	4.3	9.0	2.0
1 1/2	Н	1.900	1.500	0.200	1.767	1.06	137.75	1.36	145.30	8.2	2.6	8.2	4.0	8.2	1.8
	EH		1.100	0.400	0.950	1.51	74.05	2.14	88.86	6.5	2.0	6.5	3.0	6.5	1.4
	S		2.067	0.154	3.355	0.69	261.50	0.85	313.80	11.0	3.5	11.0	5.5	11.0	2.5
2	Н	2.375	1.939	0.218	2.953	0.73	230.00	0.98	276.00	10.8	3.4	10.8	5.0	10.8	2.4
	EH		1.503	0.436	1.773	1.34	138.25	1.36	165.90	8.2	2.6	8.2	4.0	8.2	1.8
	S		2.469	0.203	4.788	0.53	373.75	0.72	448.50	14.0	4.2	14.0	6.5	14.0	3.0
2 1/2	Н	2.875	2.323	0.276	4.238	0.57	330.55	0.87	396.66	13.0	4.0	13.0	6.1	13.0	2.9
	EH		1.771	0.552	2.464	0.79	192.25	1.15	230.70	10.3	3.1	10.3	4.8	10.3	2.2

*Consult valve manufacturer for pressure drops in a particular type of valve and port-to-port flow pattern.

Cushion ratings for **Air Cylinders Only** are described in **table b-7** and **graph b-3** below. To determine whether a cylinder will adequately stop a load without damage to the cylinder, the weight of the load (including the weight of the piston and the piston rod from **table b-6**) and the maximum speed of the piston rod must first be determined. Once these two factors are known, the **Kinetic Energy Graph** may be used. Enter the graph at its base for the value of weight determined, and project vertically to the required speed value. The point of intersection of these two lines will be the cushion rating number required for the application.

To determine the total load to be moved, the weight of the piston and rod must be included.


Total Weight = weight of the piston and non-stroke rod length (column 1) + weight of the rod per inch of stroke x the inches of stroke (Column 2) + the load to be move.

Weight Table

Bore Dia.	Column 1 Basic Wgt. (Ibs.) for Piston & Non-Stroke Rod	Rod Dia.	Column 2 Basic Wgt. (Ibs.) for 1" Stroke
1 1/2	1.5	5/8	.087
2	3.0	1	.223
2 1/2	5.4	1 3/8	.421
3 1/4	8.3	1 3/4	.682
4	14.2	2	.89
5	29.0	2 1/2	1.39
6	41.0	3	2.0
8	89.0	3 1/2	2.73
10	115.0	4	3.56
12	161.0	5	5.56
14	207.0	5 1/2	6.73

Table b-6

Example: a 3 1/4" bore cylinder, having a 1" diameter rod and 25" stroke; load to be moved is 85 lbs. Total load to be moved is then 8.3 lbs. + .223 lbs./in. x 25 in. + 85 lbs. or a total of 99 lbs.

Kinetic Energy Graph – Air Cylinders

Graph b-3

Schrader Bellows® Schrader Bellows Industrial Cylinder Division Des Plaines, Illinois C

Now refer to **table b-7** below and find the cushion ratings, using bore size and rod diameter of the cylinder selected. If a simple circuit is used, with no meter out or speed control, use the "no back pressure, Column A" values. If a meter out or speed control is to be used, use the back pressure column values. If the cushion rating found in **table b-7**, **below**, is **greater** than the number determined in **graph** **b-3**, then the cylinder will stop the load adequately. If the cushion rating in **table b-7** is **smaller** than the number found in **graph b-3**, then a larger bore cylinder should be used. In those applications where back pressures exist in the exhaust lines, it is possible to exceed the cushion ratings shown in **table b-7**. In these cases, consult the factory and advise the amount of back pressure.

Bore Dia.	Rod Dia.	Rating With No Back Pressure	Rating With Back Pressure	Bore Dia.	Rod Dia.	Rating With No Back Pressure	Rating With Back Pressure
	Cap End	12	17		3	24	30
1 1/2	5/8	8	14		3 1/2	24	30
	1	3	8	7	4	23	29
	Cap End	14	20	-	4 1/2	22	28
2	5/8	12	18		5	21	27
_	1	9	15		Cap End	29	35
	1 3/8	6 17	11 23		1 3/8	29	35
	Cap End	17	23				
2 1/2	5/8 1	14	19		1 3/4	29	34
2 1/2	1 3/8	14	19		2	27	33
	1 3/4	8	13	8	2 1/2	26	32
	Cap End	21	26	0	3	26	32
		18	20		3 1/2	26	32
3 1/4	1 3/8	17	23		4	25	31
5 1/4	1 3/4	16	22		5	23	29
	2	13	19		5 1/2	22	28
	Cap End	23	28		Cap End	33	39
	1	20	27		1 3/4	32	38
	1 3/8	20	26		2	31	37
4	1 3/4	19	25		2 1/2	31	36
	2	17	23	10	3	30	36
	2 1/2	17	22	10			
	Cap End	26	31		3 1/2	30	36
	1	23	28		4	30	36
	1 3/8	23	28		5	28	34
5	1 3/4 2	22	28		5 1/2	27	33
	2 1/2	20 19	26 25		Cap End	35	41
	3	19	25		2	33	39
	3 1/2	15	24		2 1/2	33	38
	Cap End	26	31	12	3	33	38
	1 3/8	26	31	12	3 1/2	32	38
	1 3/4	26	31		4	32	38
	2	24	29		5	31	36
6	2 1/2	24	29		5 1/2	31	36
	3	22	28		Cap End	38	43
	3 1/2	21	27				
	4	20	26		2 1/2	37	42
	Cap End	28	33		3	36	42
	1 3/8	28	33	14	3 1/2	36	41
7	1 3/4	28	33		4	36	41
	2	26	31		5	35	40
	2 1/2	25	30		5 1/2	34	40

Air Cylinder Cushion Ratings Table

Table b-7

Air Requirement Per Inch of Cylinder Stroke

The amount of air required to operate a cylinder is determined from the volume of the cylinder and its cycle in strokes per minute. This may be determined by use of the following formulae which apply to a single-acting cylinder.

$$V = \frac{3.1416 \text{ L } \text{D}^2}{4}$$
 $C = \frac{fV}{1728}$

Where: V = Cylinder volume, cu. in.

L = Cylinder stroke length, in.

D = Internal diameter of cylinder in.

- C = Air required, cfm
- f = Number of strokes per minute

The air requirements for a double-acting cylinder is almost double that of a single-acting cylinder, except for the volume of the piston rod. The air flow requirements of a cylinder in terms of cfm should not be confused with compressor ratings which are given in terms of free air. If compressor capacity is involved in the consideration of cylinder air requirements it will be necessary to convert cfm values to free air values. This relationship varies for different gauge pressures.

Thrust (pounds) = operating pressure x area of cylinder bore.

Note: That on the "out" stroke the air pressure is working on the entire piston area but on the "in" stroke the air pressure works on the piston area less the rod area.

Graph b-4 and **b-5** offer a simple means to select pneumatic components for dynamic cylinder applications. It is only necessary to know the force required, the desired speed and the pressure which can be maintained at the inlet to the F-R-L "Combo." The graphs assume average conditions relative to air line sizes, system layout, friction, etc. At higher speeds, consider appropriate cushioning of cylinders.

The general procedure to follow when using these graphs is:

1. Select the appropriate graph depending upon the pressure which can be maintained to the system – **graph b-4** for 100 psig and **graph b-5** for 80 psig.

2. Determine appropriate cylinder bore. Values underneath the diagonal cylinder bore lines indicate the maximum recommended dynamic thrust developed while the cylinder is in motion. The data in the table at the bottom of each graph indicates available static force applications in which clamping force is a prime consideration in determining cylinder bore.

Table b-8 Thrust Developed

BORE SIZE	1 1/2"	2"	2 1/2"	3 1/4"	4"	5"	6"	8"	10"
DYNAMIC THRUST (lbs.)	88	155	240	410	620	980	1400	2500	3920
STATIC THRUST (lbs.)	177	314	491	830	1250	1960	2820	5020	7850

3. Read upward on appropriate rod speed line to intersection with diagonal cylinder bore line. Read right from intersection point to determine the required C_v of the valve and the speed controls. Both the valve and speed controls must have this C_v .

The following examples illustrate use of the graphs:

Example 1: Assume it is necessary to raise a 900-pound load 24 inches in two seconds. With 100 psig maintained at the inlet to the F-R-L, use **graph b-4**. The 5-inch bore cylinder is capable of developing the required thrust while in motion. Since 24 inches in two seconds is equal to 60 fpm, read upward on the 60 fpm line to the intersection of the 5-inch bore diagonal line. Reading to the right indicates that the required valve and speed controls must each have a C_v of over 1.9. **Example 2:** Assume similar conditions to Example 1 except that only 80- psig will be available under flowing conditions. Using **graph b-5**, a 6-inch bore cylinder is indicated. Read upward on the 60 fpm line to the intersection point. Interpolation of the right-hand scale indicates a required valve and speed control C_v of over 2.8.

Example 3: Assume similar conditions to Example 1 except that the load is being moved in a horizontal plane with a coefficient of sliding friction of 0.2. Only a 180-pound thrust is now required (900 lb. x 0.2). Consult **graph b-4**. The 2-1/2 inch bore cylinder will develop sufficient thrust, and at 60 fpm requires a valve and speed control C_v of about 0.5.

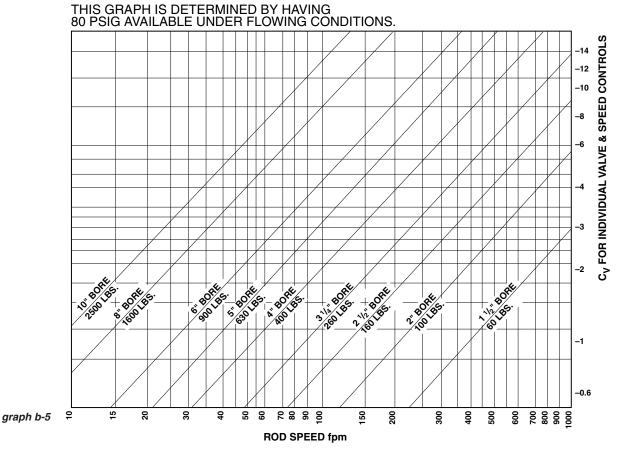
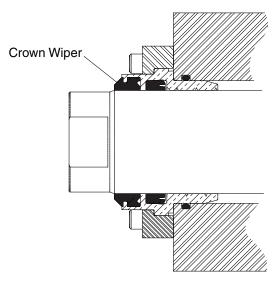


Table b-9 Thrust Developed

BORE SIZE	1 1/2	2	2 1/2	3 1/4	4	5	6	8	10
DYNAMIC THRUST (lbs.)	60	100	160	260	400	630	900	1600	2500
STATIC THRUST (lbs.)	141	251	393	663	1000	1570	2260	4010	6280

Modifications: The following modifications can be supplied on most Schrader Bellows cylinders. For specific availability see Modification Chart.


Metallic Rod Wiper

When specified metallic rod wipers can be supplied instead of the standard synthetic rubber wiperseal. Recommended in applications where contaminants tend to cling to the extended piston rod and would damage the synthetic rubber wiperseal. Installation of metallic rod wiper does not affect cylinder dimensions. It is available at extra cost.

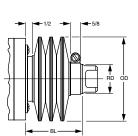
Crown Wiper™ for Series PH-2 and 7" & 8" bore PH-3

For environments that contain fine abrasive particulate specify the Crown Wiper option. The Crown Wiper is a proven superior alternative to piston rod end boots or metallic wipers that can ingest particulate. It has a sharp leading edge to effectively clean the piston rod and a beveled shape to prevent contaminant intrusion by channeling it away from the gland. It also acts as a secondary seal to wipe clean any oil film adhering to the rod on the extend stroke.

Standard Crown Wiper material for Seal Class 1 and 2 service is durable polyurethane. Optional FKM material is available for Class 5 service. The Crown Wiper requires a unique gland but does not change cylinder mounting dimensions

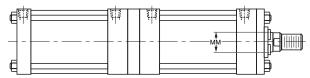
Air Bleeds

In most hydraulic circuits, cylinders are considered self-bleeding when cycled full stroke. If air bleeds are required and specified, ¹/₈" NPTF Air Bleed Ports for venting air can be provided at both ends of the cylinder body, or on the head or cap. To order, specify "Bleed Port", and indicate position desired.


Rod End Boots

Cylinders have a hardened bearing surface on the piston rod to resist external damage, and are equipped with the high efficiency "Wiperseal" to remove external dust and dirt. Exposed piston rods that are subjected to contaminants with air hardening properties, such as paint, should be protected. In such applications, the use of a collapsing cover should be considered. This is commonly referred to as a "boot". Calculate the longer rod end required to accommodate the collapsed length of the boot from the following data.

LF	.13	.13	.13	.13	.13	.13	.13	.10	.10	.10	.10	.10
OD	2 1/4	2 1/4	2 5/8	3	3 3/8	3 3/4	4 3/8	5 1/8	5 5/8	6 1/4	7	7 1/2
RD	1/2	5/8	1	1 3/8	1 3/4	2	2 1/2	3	3 1/2	4	5	5 1/2


To determine extra length of piston rod required to accommodate boot, calculate BL = Stroke x LF + $1^{1/8^{tt}}$ BL + Std. LA = length of piston rod to extend beyond

the retainer. NOTE: Check all Boot O.D's against std. "E" dimension from catalog. This may be critical on footmounted cylinders.

Tandem Cylinders

A tandem cylinder is made up of two cylinders mounted in line with pistons connected by a common piston rod and rod seals installed between the cylinders to permit double acting operation of each. Tandem cylinders allow increased output force when mounting width or height are restricted.

Reduced operating pressure is required for this construction. Please contact the factory.

Duplex Cylinders

A duplex cylinder is made up of two cylinders mounted in line with pistons not connected and with rod seals installed between the cylinders to permit double acting operation of each. Cylinders may be mounted with piston rod to piston (as shown) or back to back and are generally used to provide three position operation.

Reduced operating pressure is required for this construction. Please contact the factory.

The weights shown on this and the following pages are for Schrader Bellows PH-2, PH-3, PL-2, PA-2 and PN Series cylinders with various piston rod diameters. To determine the net weight of a cylinder, first select the proper basic weight for zero stroke, then calculate the weight of the cylinder stroke and add the result to the basic weight. For extra rod extension, use weights per inch shown in Piston Rod Weights table. Weights of cylinders with intermediate rods may be estimated from table below by taking the difference between the piston rod weights per inch and adding it to the standard diameter rod weight for the cylinder bore size involved.

Cylinder Weights, in pounds, for PH-2 & PH-3 Series (7.00" & 8.00") Hydraulic Cylinders

				l Cylinders Zero Stroke	Add Per	Double Roc Basic Wt. Z		Add Per
Bore	Rod	Rod	MF1, MF2, MF5, MF6, MS4	ME5, ME6, MP1, MS2,	Inch of	MDF1, MDF5, MDS4	MDE5, MDS2	Inch of
Size	Dia.	Code	MX0, MX1, MX2, MX3	MT1, MT2, MT4	Stroke	MDX0, MDX1, MDX3	MDT1, MDT4	Stroke
1 1/2"	5/8"	1	7.8	9.0	.5	9.7	10.8	.6
	1"	2	8.4	9.3	.6	9.1	10.7	.8
2"	1"	1	11.6	13.2	.8	14.6	16.8	1.0
	1 3/8"	2	13.5	17.1	1.0	19.4	20.6	1.4
2 1/2"	1"	1	17.0	19.5	1.1	21.0	24.5	1.3
	1 3/4"	2	22.5	25.5	1.5	27.0	30.0	2.2
3 1/4"	1 3/8"	1	32.0	41.0	1.8	43.0	52.0	2.2
	2"	2	37.0	46.0	2.2	48.0	57.0	3.1
4"	1 3/4"	1	48.0	53.0	2.5	59.0	63.0	3.2
	2 1/2"	2	52.0	58.0	3.2	92.0	97.0	4.6
5"	2"	1	76.0	82.0	3.4	96.0	102.0	4.8
	3 1/2"	2	88.0	86.0	5.2	117.0	123.0	7.9
6"	2 1/2"	1	125.0	133.0	5.2	153.0	159.0	6.6
	4"	2	133.0	140.0	7.3	182.0	190.0	10.9
7"	3"	1	233.0	242.0	6.7	320.0	339.0	8.7
	5"	2	240.0	253.0	10.3	341.0	360.0	15.9
8"	3 1/2"	1	262.0	276.0	9.0	323.0	331.0	11.7
	5 1/2"	2	300.0	309.0	13.0	390.0	411.0	19.7

Cylinder Weights, in pounds, for PH-3 Series Large Bore Hydraulic Cylinders

Bore	Rod Ø	Rod Code		Sir	Double Rod (Double Rod Cylinders			
Size	(In.)			Basic Wt. 2	Zero Stroke	Add Per In.	Basic Weight	Add Per In.	
			MT1, MT2	MT4, ME5, ME6	MF5, MF6	MP1, MS2, MS3	of Stroke	Zero Stroke Add to All Mtg. Styles	of Stroke
	4 1/2	1	562	646	684	607	15	43	20
10.00	5	3	574	656	695	619	16	50	21
10.00	5 1/2	4	583	667	705	628	17	64	24
	7	2	620	704	742	665	21	101	32
	5 1/2	1	924	1057	1136	1000	22	64	29
12.00	7	3	961	1094	1173	1036	26	101	37
	8	2	1022	1155	1234	1097	29	162	43
	7	1	1335	1520	1582	1485	28	101	39
14.00	8	3	1396	1581	1643	1546	31	162	45
	10	2	1496	1681	1743	1646	39	262	61

Bore	Rod	Rod			d Cylinders		Double Rod Cylinders			
Ø	Ø	Code		Basic Wt.	Zero Stroke		Basic Wt. Zero	Add Per Inch		
			ME5, ME6	MF5, MF6	MP1	Add Per Inch of Stroke	Stroke Add to All Mtg. Styles	of Stroke		
	8.000	1	2073	2257	2226	35	149	49		
16.00	9.000	3	2122	2305	2275	39	198	57		
	10.000	4	2181	2364	2334	43	257	65		
10.00	9.000	1	3165	3256	3330	45	198	63		
18.00	10.000	3	3224	3315	3390	50	257	72		
20.00	10.000	1	4231	4406	4551	57	257	79		

Piston Rod Weights, in pounds

Rod Ø	Piston Rod Wt. Per Inch	Rod Ø	Piston Rod Wt. Per Inch	Rod Ø	Piston Rod Wt. Per Inch
0.625	0.09	2.500	1.40	5.000	5.56
1.000	0.22	3.000	2.00	5.500	6.72
1.375	0.42	3.500	2.72	7.000	10.89
1.750	0.68	4.000	3.56	8.000	14.22
2.000	0.89	4.500	4.51	10.000	22.23

Cylinder Weights, in pounds, for PA-2, PN, PL-2 Series cylinders

			od Cylinders Zero Stroke	Add Per	Double Rod Basic Wt. Z		Add Per
Bore Size	Rod Dia.	MF1, MF2, MS4 MX0, MX1, MX2, MX3	MF5, MF6, MP1, MS2 MT1, MT2, MT4	Inch of Stroke	MDF1, MDS4 MDX0, MDX1, MDX3	MDF5, MDS2 MDT1, MDT4	Inch of Stroke
1"	1/2"	2.5	2.9	.20	4.7	5.5	.40
	5/8"	2.6	3.0	.23	4.9	5.7	.46
1 1/2"	5/8"	3.7	4.3	.3	4.2	4.8	.6
/ _	1"	4.5	5.1	.4	5.8	6.7	.8
	5/8"	6.5	6.9	.5	8.2	8.6	1.0
2"	1"	7.0	7.5	.63	9.0	9.5	1.3
2	1 3/8"	8.5	8.9	.8	11.2	11.6	1.6
	5/8"	9.0	9.7	.6	11.4	12.1	1.2
2 1/2"	1"	9.5	10.0	.73	12.0	12.5	1.5
2 1/2	1 3/4"	13.2	13.6	1.1	19.8	20.5	2.2
	1"	16.5	17.5	.8	22.0	23.0	1.6
3 1/4"	1 3/8"	17.0	18.0	1.0	22.5	23.5	2.0
	2"	27.0	28.0	1.4	43.0	44.0	2.8
	1"	26.0	31.0	1.0	33.0	38.0	2.0
4"	1 3/8"	26.5	31.5	1.2	33.5	38.5	2.5
	2 1/2"	36.0	42.0	2.0	53.0	58.0	4.0
	1"	39.0	46.0	1.1	48.0	55.0	2.2
5"	1 3/8"	39.5	46.5	1.3	48.5	55.5	2.6
	3 1/2"	63.0	66.0	3.6	96.0	103.0	7.2
6"	1 3/8"	68.0	77.0	1.5	80.0	89.0	3.0
0	4"	100.0	102.0	4.5	144.0	153.0	9.0
7"	1 3/8"	80.0	85.0	2.0	92.0	97.0	4.0
	2"	82.0	87.0	3.5	96.0	101.0	7.0
8"	1 3/8"	94.0	99.0	2.0	108.0	113.0	4.0
0	5 1/2"	168.0	172.0	8.0	256.0	261.0	16.0
10"	1 3/4"	182.0	188.0	2.5	178.0	184.0	5.0
	5 1/2"	258.0	264.0	8.5	330.0	335.0	17.0
12"	2"	274.0	282.0	3.5	270.0	280.0	7.0
12	5 1/2"	350.0	358.0	9.5	420.0	430.0	19.0
14"	2 1/2"	435.0	448.0	4.5	440.0	655.0	9.0
14	5 1/2"	510.0	519.0	10.0	490.0	705.0	20.0

Piston Rod Weights, in pounds

Rod Dia.	Piston Rod Wt. Per Inch	Rod Dia.	Piston Rod Wt. Per Inch	Rod Dia.	Piston Rod Wt. Per Inch
5/8"	.09	2"	.89	4"	3.56
1"	.22	2 1/2"	1.40	4 1/2"	4.51
1 3/8"	.42	3"	2.00	5"	5.56
1 3/4"	.68	3 1/2"	2.72	5 1/2"	6.72

Safety Guide for Selecting and Using Hydraulic, Pneumatic Cylinders and Their Accessories

WARNING: \triangle FAILURE OF THE CYLINDER, ITS PARTS, ITS MOUNTING, ITS CONNECTIONS TO OTHER OBJECTS, OR ITS CONTROLS CAN RESULT IN:

- · Unanticipated or uncontrolled movement of the cylinder or objects connected to it.
- Falling of the cylinder or objects held up by it.
- Fluid escaping from the cylinder, potentially at high velocity.

THESE EVENTS COULD CAUSE DEATH OR PERSONAL INJURY BY, FOR EXAMPLE, PERSONS FALLING FROM HIGH LOCATIONS, BEING CRUSHED OR STRUCK BY HEAVY OR FAST MOVING OBJECTS, BEING PUSHED INTO DANGEROUS EQUIPMENT OR SITUATIONS, OR SLIPPING ON ESCAPED FLUID.

Before selecting or using Parker (The Company) cylinders or related accessories, it is important that you read, understand and follow the following safety information. Training is advised before selecting and using The Company's products.

1.0 General Instructions

1.1 Scope – This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) cylinder products. This safety guide is a supplement to and is to be used with the specific Company publications for the specific cylinder products that are being considered for use.

1.2 Fail Safe – Cylinder products can and do fail without warning for many reasons. All systems and equipment should be designed in a fail-safe mode so that if the failure of a cylinder product occurs people and property won't be endangered.

1.3 Distribution – Provide a free copy of this safety guide to each person responsible for selecting or using cylinder products. Do not select or use The Company's cylinders without thoroughly reading and understanding this safety guide as well as the specific Company publications for the products considered or selected.

1.4 User Responsibility – Due to very wide variety of cylinder applications and cylinder operating conditions, The Company does not warrant that any particular cylinder is suitable for any specific application. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The hydraulic and pneumatic cylinders outlined in this catalog are designed to The Company's design guidelines and do not necessarily meet the design guideline of other agencies such as American Bureau of Shipping, ASME Pressure Vessel Code etc. The user, through its own analysis and testing, is solely responsible for:

- · Making the final selection of the cylinders and related accessories.
- Determining if the cylinders are required to meet specific design requirements as required by the Agency(s) or industry standards covering the design of the user's equipment.
- Assuring that the user's requirements are met, OSHA requirements are met, and safety guidelines from the applicable agencies such as but not limited to ANSI are followed and that the use presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the cylinders are used.

1.5 Additional Questions – Call the appropriate Company technical service department if you have any questions or require any additional information. See the Company publication for the product being considered or used, or call 1-847-298-2400, or go to <u>www.parker.com</u>, for telephone numbers of the appropriate technical service department.

2.0 Cylinder and Accessories Selection

2.1 Seals – Part of the process of selecting a cylinder is the selection of seal compounds. Before making this selection, consult the "seal information page(s)" of the publication for the series of cylinders of interest.

The application of cylinders may allow fluids such as cutting fluids, wash down fluids etc. to come in contact with the external area of the cylinder. These fluids may attack the piston rod wiper and or the primary seal and must be taken into account when selecting and specifying seal compounds.

Dynamic seals will wear. The rate of wear will depend on many operating factors. Wear can be rapid if a cylinder is mis-aligned or if the cylinder has been improperly serviced. The user must take seal wear into consideration in the application of cylinders.

2.2 Piston Rods – Possible consequences of piston rod failure or separation of the piston rod from the piston include, but are not limited to are:

- · Piston rod and or attached load thrown off at high speed.
- High velocity fluid discharge.
- Piston rod extending when pressure is applied in the piston retract mode.

Piston rods or machine members attached to the piston rod may move suddenly and without warning as a consequence of other conditions occurring to the machine such as, but not limited to:

• Unexpected detachment of the machine member from the piston rod.

- Failure of the pressurized fluid delivery system (hoses, fittings, valves, pumps, compressors) which maintain cylinder position.
- Catastrophic cylinder seal failure leading to sudden loss of pressurized fluid.
- Failure of the machine control system.

Follow the recommendations of the "Piston Rod Selection Chart and Data" in the publication for the series of cylinders of interest. The suggested piston rod diameter in these charts must be followed in order to avoid piston rod buckling.

Piston rods are not normally designed to absorb bending moments or loads which are perpendicular to the axis of piston rod motion. These additional loads can cause the piston rod to fail. If these types of additional loads are expected to be imposed on the piston rod, their magnitude should be made known to our engineering department.

The cylinder user should always make sure that the piston rod is securely attached to the machine member.

On occasion cylinders are ordered with double rods (a piston rod extended from both ends of the cylinder). In some cases a stop is threaded on to one of the piston rods and used as an external stroke adjuster. On occasions spacers are attached to the machine member connected to the piston rod and also used as a stroke adjuster. In both cases the stops will create a pinch point and the user should consider appropriate use of guards. If these external stops are not perpendicular to the mating contact surface, or if debris is trapped between the contact surface, a bending moment will be placed on the piston rod, which can lead to piston rod failure. An external stop will also negate the effect of cushioning and will subject the piston rod in impact loading. Those two (2) conditions can cause piston rod failure. Internal stroke adjusters are available with and without cushions. The use of external stroke adjusters should be reviewed with our engineering department.

The piston rod to piston and the stud to piston rod threaded connections are secured with an anaerobic adhesive. The strength of the adhesive decreases with increasing temperature. Cylinders which can be exposed to temperatures above +250°F (+121°C) are to be ordered with a non studded piston rod and a pinned piston to rod joint.

2.3 Cushions – Cushions should be considered for cylinder applications when the piston velocity is expected to be over 4 inches/second.

Cylinder cushions are normally designed to absorb the energy of a linear applied load. A rotating mass has considerably more energy than the same mass moving in a linear mode. Cushioning for a rotating mass application should be reviewed by our engineering department.

2.4 Cylinder Mountings – Some cylinder mounting configurations may have certain limitations such as but not limited to minimum stroke for side or foot mounting cylinders or pressure de-ratings for certain mounts. Carefully review the catalog for these types of restrictions.

Always mount cylinders using the largest possible high tensile alloy steel socket head cap screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.

2.5 Port Fittings – Hydraulic cylinders applied with meter out or deceleration circuits are subject to intensified pressure at piston rod end. The rod end pressure is approximately equal to:

operating pressure x effective cap end area

effective rod end piston area

Contact your connector supplier for the pressure rating of individual connectors.

3.0 Cylinder and Accessories Installation and Mounting 3.1 Installation

3.1.1 – Cleanliness is an important consideration, and cylinders are shipped with the ports plugged to protect them from contaminants entering the ports. These plugs should not be removed until the piping is to be installed. Before making the connection to the cylinder ports, piping should be thoroughly cleaned to remove all chips or burrs which might have resulted from threading or flaring operations.

3.1.2 – Cylinders operating in an environment where air drying materials are present such as fast-drying chemicals, paint, or weld splatter, or other hazardous conditions such as excessive heat, should have shields installed to prevent damage to the piston rod and piston rod seals.

3.1.3 – Proper alignment of the cylinder piston rod and its mating component on the machine should be checked in both the extended and retracted positions. Improper alignment will result in excessive rod gland and/or cylinder bore wear. On fixed mounting cylinders attaching the piston rod while the rod is retracted will help in achieving proper alignment.

3.1.4 – Sometimes it may be necessary to rotate the piston rod in order to thread the piston rod into the machine member. This operation must always be done with zero pressure being applied to either side of the piston. Failure to follow this procedure may result in loosening the piston to rod-threaded connection. In some rare cases the turning of the piston rod may rotate a threaded piston rod gland and loosen it from the cylinder head. Confirm that this condition is not occurring. If it does, re-tighten the piston rod gland firmly against the cylinder head.

For double rod cylinders it is also important that when attaching or detaching the piston rod from the machine member that the torque be applied to the piston rod end of the cylinder that is directly attaching to the machine member with the opposite end unrestrained. If the design of the machine is such that only the rod end of the cylinder opposite to where the rod attaches to the machine member can be rotated, consult the factory for further instructions.

3.2 Mounting Recommendations

3.2.1 – Always mount cylinders using the largest possible high tensile alloy steel socket head screws that can fit in the cylinder mounting holes and torque them to the manufacturer's recommendations for their size.

3.2.2 – Side-Mounted Cylinders – In addition to the mounting bolts, cylinders of this type should be equipped with thrust keys or dowel pins located so as to resist the major load.

3.2.3 – Tie Rod Mounting – Cylinders with tie rod mountings are recommended for applications where mounting space is limited. The standard tie rod extension is shown as BB in dimension tables. Longer or shorter extensions can be supplied. Nuts used for this mounting style should be torqued to the same value as the tie rods for that bore size.

3.2.4 – Flange Mount Cylinders – The controlled diameter of the rod gland extension on head end flange mount cylinders can be used as a pilot to locate the cylinders in relation to the machine. After alignment has been obtained, the flanges may be drilled for pins or dowels to prevent shifting.

3.2.5 – Trunnion Mountings – Cylinders require lubricated bearing blocks with minimum bearing clearances. Bearing blocks should be carefully aligned and rigidly mounted so the trunnions will not be subjected to bending moments. The rod end should also be pivoted with the pivot pin in line and parallel to axis of the trunnion pins.

3.2.6 – Clevis Mountings – Cylinders should be pivoted at both ends with centerline of pins parallel to each other. After cylinder is mounted, be sure to check to assure that the cylinder is free to swing through its working arc without interference from other machine parts.

4.0 Cylinder and Accessories Maintenance, Troubleshooting and Replacement

4.1 Storage – At times cylinders are delivered before a customer is ready to install them and must be stored for a period of time. When storage is required the following procedures are recommended.

4.1.1 – Store the cylinders in an indoor area which has a dry, clean and noncorrosive atmosphere. Take care to protect the cylinder from both internal corrosion and external damage.

4.1.2 – Whenever possible cylinders should be stored in a vertical position (piston rod up). This will minimize corrosion due to possible condensation which could occur inside the cylinder. This will also minimize seal damage.

 $\ensuremath{\textbf{4.1.3}}$ – Port protector plugs should be left in the cylinder until the time of installation.

4.1.4 – If a cylinder is stored full of hydraulic fluid, expansion of the fluid due to temperature changes must be considered. Installing a check valve with free flow out of the cylinder is one method.

4.1.5 – When cylinders are mounted on equipment that is stored outside for extended periods, exposed unpainted surfaces, e.g. piston rod, must be coated with a rust-inhibiting compound to prevent corrosion.

4.2 Cylinder Trouble Shooting

4.2.1 - External Leakage

4.2.1.1 – Rod seal leakage can generally be traced to worn or damaged seals. Examine the piston rod for dents, gouges or score marks, and replace piston rod if surface is rough.

Rod seal leakage could also be traced to gland wear. If clearance is excessive, replace rod bushing and seal. Rod seal leakage can also be traced to seal deterioration. If seals are soft or gummy or brittle, check compatibility of seal material with lubricant used if air cylinder, or operating fluid if hydraulic cylinder. Replace with seal material, which is compatible with these fluids. If the seals are hard or have lost elasticity, it is usually due to exposure to temperatures in excess of $165^{\circ}F$. $(+74^{\circ}C)$. Shield the cylinder from the heat source to limit temperature to $350^{\circ}F$. $(+177^{\circ}C)$ and replace with fluorocarbon seals.

4.2.1.2 – Cylinder body seal leak can generally be traced to loose tie rods. Torque the tie rods to manufacturer's recommendation for that bore size.

Excessive pressure can also result in cylinder body seal leak. Determine maximum pressure to rated limits. Replace seals and retorque tie rods as in paragraph above. Excessive pressure can also result in cylinder body seal leak. Determine if the pressure rating of the cylinder has been exceeded. If so, bring the operating pressure down to the rating of the cylinder and have the tie rods replaced.

Pinched or extruded cylinder body seal will also result in a leak. Replace cylinder body seal and retorque as in paragraph above.

Cylinder body seal leakage due to loss of radial squeeze which shows up in the form of flat spots or due to wear on the O.D. or I.D. – Either of these are symptoms of normal wear due to high cycle rate or length of service. Replace seals as per paragraph above.

4.2.2 – Internal Leakage

4.2.2.1 – Piston seal leak (by-pass) 1 to 3 cubic inches per minute leakage is considered normal for piston ring construction. Virtually no static leak with lipseal type seals on piston should be expected. Piston seal wear is a usual cause of piston seal leakage. Replace seals as required.

4.2.2.2 – With lipseal type piston seals excessive back pressure due to over-adjustment of speed control valves could be a direct cause of rapid seal wear. Contamination in a hydraulic system can result in a scored cylinder bore, resulting in rapid seal wear. In either case, replace piston seals as required.

4.2.2.3 – What appears to be piston seal leak, evidenced by the fact that the cylinder drifts, is not always traceable to the piston. To make sure, it is suggested that one side of the cylinder piston be pressurized and the fluid line at the opposite port be disconnected. Observe leakage. If none is evident, seek the cause of cylinder drift in other component parts in the circuit.

4.2.3 - Cylinder Fails to Move the Load

4.2.3.1 – Pneumatic or hydraulic pressure is too low. Check the pressure at the cylinder to make sure it is to circuit requirements.

4.2.3.2 – Piston Seal Leak – Operate the valve to cycle the cylinder and observe fluid flow at valve exhaust ports at end of cylinder stroke. Replace piston seals if flow is excessive.

4.2.3.3 – Cylinder is undersized for the load – Replace cylinder with one of a larger bore size.

4.3 Erratic or Chatter Operation

4.3.1 – Excessive friction at rod gland or piston bearing due to load misalignment – Correct cylinder-to-load alignment.

4.3.2 – Cylinder sized too close to load requirements – Reduce load or install larger cylinder.

4.3.3 – Erratic operation could be traced to the difference between static and kinetic friction. Install speed control valves to provide a back pressure to control the stroke.

4.4 Cylinder Modifications, Repairs, or Failed Component – Cylinders as shipped from the factory are not to be disassembled and or modified. If cylinders require modifications, these modifications must be done at company locations or by The Company's certified facilities. The Industrial Cylinder Division Engineering Department must be notified in the event of a mechanical fracture or permanent deformation of any cylinder component (excluding seals). This includes a broken piston rod, tie rod, mounting accessory or any other cylinder component. The notification should include all operation and application details. This information will be used to provide an engineered repair that will prevent recurrence of the failure.

It is allowed to disassemble cylinders for the purpose of replacing seals or seal assemblies. However, this work must be done by strictly following all the instructions provided with the seal kits.

Offer of Sale

The items described in this document and other documents and descriptions provided by Parker Hannifin Corporation, its subsidiaries and its authorized distributors ("Seller") are hereby offered for sale at prices to be established by Seller. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any item described in its document, when communicated to Seller verbally, or in writing, shall constitute acceptance of this offer. All goods, services or work described will be referred to as "Products".

 Terms and Conditions. Seller's willingness to offer Products, or accept an order for Products, to or from Buyer is subject to these Terms and Conditions or any newer version of the terms and conditions found on-line at www.parker.com/saleterms/. Seller objects to any contrary or additional terms or conditions of Buyer's order or any other document issued by Buyer.

2. Price Adjustments: Payments. Prices stated on Seller's quote or other documentation offered by Seller are valid for 30 days, and do not include any sales, use, or other taxes unless specifically stated. Unless otherwise specified by Seller, all prices are F.C.A. Seller's facility (INCOTERMS 2010). Payment is subject to credit approval and is due 30 days from the date of invoice or such other term as required by Seller's Credit Department, after which Buyer shall pay interest on any unpaid invoices at the rate of 1.5% per month or the maximum allowable rate under applicable law.

3. Delivery Dates; Title and Risk; Shipment. All delivery dates are approximate and Seller shall not be responsible for any damages resulting from any delay. Regardless of the manner of shipment, title to any products and risk of loss or damage shall pass to Buyer upon placement of the products with the shipment carrier at Seller's facility. Unless otherwise stated, Seller may exercise its judgment in choosing the carrier and means of delivery. No deferment of shipment at Buyers' request beyond the respective dates indicated will be made except on terms that will indemnify, defend and hold Seller harmless against all loss and additional expense. Buyer shall be responsible for any additional shipping charges incurred by Seller due to Buyer's acts or omissions.

4. <u>Warranty.</u> Seller warrants that the Products sold hereunder shall be free from defects in material or workmanship for a period of eighteen months from the date of delivery to Buyer. The prices charged for Seller's products are based upon the exclusive limited warranty stated above, and upon the following disclaimer: <u>DISCLAIMER OF WARRANTY</u>: THIS WARRANTY COMPRISES THE SOLE AND ENTIRE WARRANTY PERTAINING TO PRODUCTS PROVIDED HEREUNDER. SELLER DISCLAIMS ALL OTHER WARRANTIES, EXPRESS AND IMPLIED, INCLUDING DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

5. Claims; Commencement of Actions. Buyer shall promptly inspect all Products upon delivery. No claims for shortages will be allowed unless reported to the Seller within 10 days of delivery. No other claims against Seller will be allowed unless asserted in writing within 30 days after delivery. Buyer shall notify Seller of any alleged breach of warranty within 30 days after the date the defect is or should have been discovered by Buyer. Any action based upon breach of this agreement or upon any other claim arising out of this sale (other than an action by Seller for an amount due on any invoice) must be commenced within 12 months from the date of the breach without regard to the date breach is discovered.

6. <u>LIMITATION OF LIABILITY.</u> UPON NOTIFICATION, SELLER WILL, AT ITS OPTION, REPAIR OR REPLACE A DEFECTIVE PRODUCT, OR REFUND THE PURCHASE PRICE. IN NO EVENT SHALL SELLER BE LIABLE TO BUYER FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF, OR AS THE RESULT OF, THE SALE, DELIVERY, NON-DELIVERY, SERVICING, USE OR LOSS OF USE OF THE PRODUCTS OR ANY PART THEREOF, OR FOR ANY CHARGES OR EXPENSES OF ANY NATURE INCURRED WITHOUT SELLER'S WRITTEN CONSENT, EVEN IF SELLER HAS BEEN NEGLIGENT, WHETHER IN CONTRACT, TORT OR OTHER LEGAL THEORY. IN NO EVENT SHALL SELLER'S LIABILITY UNDER ANY CLAIM MADE BY BUYER EXCEED THE PURCHASE PRICE OF THE PRODUCTS.

7. User Responsibility. The user, through its own analysis and testing, is solely responsible for making the final selection of the system and Product and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application and follow applicable industry standards and Product information. If Seller provides Product or system options, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the Products or systems.

8. Loss to Buyer's Property. Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, will be considered obsolete and may be destroyed by Seller after two consecutive years have elapsed without Buyer ordering the items manufactured using such property. Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.

9. Special Tooling. A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns, acquired to manufacture Products. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the Products, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.

10. <u>Buyer's Obligation; Rights of Seller.</u> To secure payment of all sums due or otherwise, Seller shall retain a security interest in the goods delivered and this agreement shall be deemed a Security Agreement under the Uniform Commercial Code. Buyer authorizes Seller as its attorney to execute and file on Buyer's behalf all documents Seller deems necessary to perfect its security interest.

11. <u>Improper use and Indemnity.</u> Buyer shall indemnify, defend, and hold Seller harmless from any claim, liability, damages, lawsuits, and costs (including attorney fees), whether for personal injury, property damage, patent, trademark or copyright

infringement or any other claim, brought by or incurred by Buyer, Buyer's employees, or any other person, arising out of: (a) improper selection, improper application or other misuse of Products purchased by Buyer from Seller; (b) any act or omission, negligent or otherwise, of Buyer; (c) Seller's use of patterns, plans, drawings, or specifications furnished by Buyer to manufacture Product; or (d) Buyer's failure to comply with these terms and conditions. Seller shall not indemnify Buyer under any circumstance except as otherwise provided.

12. <u>Cancellations and Changes.</u> Orders shall not be subject to cancellation or change by Buyer for any reason, except with Seller's written consent and upon terms that will indemnify, defend and hold Seller harmless against all direct, incidental and consequential loss or damage. Seller may change product features, specifications, designs and availability with notice to Buyer.

13. <u>Limitation on Assignment</u>. Buyer may not assign its rights or obligations under this agreement without the prior written consent of Seller.

14. <u>Force Majeure.</u> Seller does not assume the risk and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of Seller (hereinafter "Events of Force Majeure"). Events of Force Majeure shall include without limitation: accidents, strikes or labor disputes, acts of any government or government agency, acts of nature, delays or failures in delivery from carriers or suppliers, shortages of materials, or any other cause beyond Seller's reasonable control.

15. <u>Waiver and Severability</u>. Failure to enforce any provision of this agreement will not waive that provision nor will any such failure prejudice Seller's right to enforce that provision in the future. Invalidation of any provision of this agreement by legislation or other rule of law shall not invalidate any other provision herein. The remaining provisions of this agreement will remain in full force and effect.

16. <u>Termination</u>. Seller may terminate this agreement for any reason and at any time by giving Buyer thirty (30) days written notice of termination. Seller may immediately terminate this agreement, in writing, if Buyer: (a) commits a breach of any provision of this agreement (b) appointments a trustee, receiver or custodian for all or any part of Buyer's property (c) files a petition for relief in bankruptcy on its own behalf, or by a third party (d) makes an assignment for the benefit of creditors, or (e) dissolves or liquidates all or a majority of its assets.

17. <u>Governing Law.</u> This agreement and the sale and delivery of all Products hereunder shall be deemed to have taken place in and shall be governed and construed in accordance with the laws of the State of Ohio, as applicable to contracts executed and wholly performed therein and without regard to conflicts of laws principles. Buyer irrevocably agrees and consents to the exclusive jurisdiction and venue of the courts of Cuyahoga County, Ohio with respect to any dispute, controversy or claim arising out of or relating to this agreement.

18. Indemnity for Infringement of Intellectual Property Rights. Seller shall have no liability for infringement of any patents, trademarks, copyrights, trade dress, trade secrets or similar rights except as provided in this Section. Seller will defend and indemnify Buyer against allegations of infringement of U.S. patents, U.S. trademarks, copyrights, trade dress and trade secrets ("Intellectual Property Rights"). Seller will defend at its expense and will pay the cost of any settlement or damages awarded in an action brought against Buyer based on an allegation that a Product sold pursuant to this Agreement infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations or actions including all negotiations for settlement or compromise. If a Product is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using the Product, replace or modify the Product so as to make it noninfringing, or offer to accept return of the Product and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to Products delivered hereunder for which the designs are specified in whole or part by Buyer, or infringement resulting from the modification, combination or use in a system of any Product sold hereunder. The foregoing provisions of this Section shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights.

19. <u>Entire Agreement</u>. This agreement contains the entire agreement between the Buyer and Seller and constitutes the final, complete and exclusive expression of the terms of sale. All prior or contemporaneous written or oral agreements or negotiations with respect to the subject matter are herein merged.

20. Compliance with Law, U. K. Bribery Act and U.S. Foreign Corrupt Practices Act. Buyer agrees to comply with all applicable laws and regulations, including both those of the United Kingdom and the United States of America, and of the country or countries of the Territory in which Buyer may operate, including without limitation the U. K. Bribery Act, the U.S. Foreign Corrupt Practices Act ("FCPA") and the U.S. Anti-Kickback Act (the "Anti-Kickback Act"), and agrees to indemnify and hold harmless Seller from the consequences of any violation of such provisions by Buyer, its employees or agents. Buyer acknowledges that they are familiar with the provisions of the U. K. Bribery Act, the FCPA and the Anti-Kickback Act, and certifies that Buyer will adhere to the requirements thereof. In particular, Buyer represents and agrees that Buyer shall not make any payment or give anything of value, directly or indirectly to any governmental official, any foreign political party or official thereof, any candidate for foreign political office, or any commercial entity or person, for the purpose of influencing such person to purchase products or otherwise benefit the business of Seller.

